
Empirical and Computational Methods

for Electoral Politics

Benjamin Haber Fifield

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Politics

Adviser: Kosuke Imai

January 2019

c© Copyright by Benjamin Haber Fifield, 2019.

All rights reserved.

Abstract

This collection of three essays introduces new computational and empirical methods

for data analysis and validation in political science, with specific applications to the

practice and study of electoral politics.

In the first chapter, I introduce a set of graphical diagnostics that can be used

to improve statistical models of heterogeneous treatment effects. I adapt the uplift

curve, which has been used previously to visualize cumulative benefits from targeting

treatments, and repurpose it as a tool for model selection to make model-building

workflows for predicting treatment effects less ad-hoc. I also present a stack-ranking

graphical diagnostic for heterogeneous treatment effect models to help visualize model

fit, and I apply both diagnostics to a canonical experiment on voter mobilization

using social pressure appeals. The chapter advances a more principled model-building

approach for predicting individual-level treatment effects.

The second chapter builds on recent computational and simulation-based methods

for studying the effects and consequences of congressional redistricting. As ensembles

of simulated redistricting plans become more common in the academic literature and

as legal evidence, validating the accuracy and representativeness of those algorithms

has become increasingly important. This paper makes two advances — first, it applies

a recently-developed enumeration algorithm to increase the size and complexity of

simulation validation datasets, and second, it introduces a new validation diagnostic

that can be used to ensure redistricting simulators are accurately representing the

target distribution of plans. I then apply the new validation test to two competing

redistricting simulation methods.

The third chapter (adapted from work coauthored with Ted Enamorado and Ko-

suke Imai) is a practical guide to data merging and record linkage using fastLink, a

new open-source implementation of the canonical Fellegi-Sunter probabilistic record

linkage model. I briefly review fastLink and the computational improvements it im-

iii

plements, and I then walk through several applied data examples using the software

that illustrate its preprocessing, merging, and inspection functionalities. Finally, I

apply the entire proposed workflow and software to a validation exercise using data

on local-level politicians in Rio de Janeiro, Brazil, where I use fastLink to analyze

rates of party switching across election cycles.

iv

Acknowledgements

This dissertation, at many points, looked like it would never be completed. I still

don’t quite believe that it actually exists, and I’m incredibly grateful for the people

in my life who have supported me along the way.

I owe Kosuke Imai immeasurably for his mentorship throughout my time at Prince-

ton. It’s fair to say that my life changed when Kosuke asked me to precept Quant

II back in Spring 2013. I’m consistently in awe of his devotion to his students, his

extraordinary collaborative drive, and his incredible optimism and excitement for re-

search. I’ve learned so much from Kosuke about how to ask questions, how to think

about evidence, how to be a better mentor, and how to demand the best from myself.

It’s also due to Kosuke that I had any faith in my ability to return to Princeton after

a nearly two-year absence and actually finish a dissertation. I am incredibly proud to

call myself his student, and I’ll always be grateful to him for what I’ve learned and

the opportunities I’ve had that are a direct result of his mentorship.

I’ve experienced more dramatic highs and lows alongside David Nickerson than

any advisor should have to deal with in a student. Most of these moments came long

before he agreed to join my dissertation committee — during my time at HFA, his

rigor, thoughtfulness, depth of knowledge, and humor motivated my work and guided

me through major professional and personal decisions. He was an incredible resource

when I was deciding to return to graduate school, and he has given me consistently

excellent advice on a project that is frequently difficult to sell to political scientists.

I’m lucky to call him both an advisor and a friend.

I’m also grateful for Nolan McCarty for his steadfast support throughout my time

at Princeton. Nolan has seen me whiplash through dissertation topics, enrollment

statuses, and employers, and he has always been there without judgement to read

anything I sent his way, no matter how long it had been since we had last talked.

v

One of my biggest mistakes at Princeton was not asking for his advice more often,

but I am incredibly thankful for his patience and thoughtfulness throughout.

While Chuck Cameron is no longer on my committee, I owe him a special thanks

for being a consistent source of support throughout my health issues in 2015. I always

appreciated his insistence on asking how I was doing before diving into real work, and

for his excitement whenever I had good news on successful surgeries and treatments.

To every one of my friends at Princeton — Kabir, Katie, Marcus, Liz, Rebecca,

Ted, Yuki, Winston, Asya, Chantal, Adam, Scott, Carlos, Xander, Ryan, Wouter,

Christoph, Joan, Naoki, James, Steven, Mike, and many more who I apologize for

leaving off — you made graduate school a warmer, more fun, and more supportive

place than I ever expected. I’m amazed thinking about how many lifelong friends

I’ve met here, and how many huge milestones we’ve celebrated together. And to

Jacob, Gordon, Zack, Mark and Christian — thank you for always being there to get

me out of Princeton when I needed it most, for running up to Boston and Vermont

together for weekends, for always having a couch or floor to crash on, and for being

the strongest and longest friendships of my life.

In September 2015, I left grad school to join Hillary Clinton’s presidential cam-

paign — easily the best and most consequential decision of my professional life. Thank

you to Kit Rodolfa and Elan Kriegel for taking a chance on me back when I had no

idea what kind of chaos was going to hit my life when I joined. To all of model-poll —

Alissa, Alex, Bill, Hana, Hannes, Hasan, Jason, Meg, and Sarah — I am so grateful

that I got to live this alongside all of you and gain so many amazing friendships along

the way. You were all a source of refuge, strength, and humor throughout endless

week, query costing, the not-always-metaphorical flies, and countless tag-ups, and I

am immensely thankful that we continued to be there for each other after it ended.

I’ll be proud to call myself Dr. Bentern once this dissertation is defended.

vi

To my family — my sister Jocie, and my parents John and Sandi — thank you for

being a constant source of support, encouragement, distraction, and warmth through-

out my entire life, and particularly throughout the entire graduate school experience.

I can’t imagine making it to Princeton in the first place without the values of empa-

thy, curiosity, and compassion you made sure were as important to me as they are to

you, and I would never have finished without your confidence that I could actually

do so. And to my mother-in-law Sue, thank you so much for opening your home and

your family to me, for always making sure we were well-fed and well-rested at the

most stressful points of graduate school, for loving Charlie unconditionally even at

his most obnoxious, and for being an amazing second mom.

Finally, to Yang-Yang — we’ve seen each other through a campaign, fieldwork,

cross-country road trips, sickness and surgeries, beach lounging, at least five different

apartments (depending on how you count), a dog-son that at first held us captive

for months on end, the job market (as I write this!) and an unbelievable amount

of change since Festivus 2014. Throughout everything, you have been the greatest

source of stability, humor, wisdom, and love I could ever ask for, and I am so grateful

for the strength and confidence you give me every day. I can’t wait to see where our

life together takes us.

November 16, 2018

Plainsboro, NJ

vii

For my family.

viii

Contents

Abstract . iii

Acknowledgements . v

List of Tables . xii

List of Figures . xiv

1 Introduction 1

2 Model Selection and Model Comparison for Predicting Heteroge-

neous Treatment Effects 5

2.1 Introduction . 5

2.2 Heterogeneous Treatment Effect Models in Political Science and Polit-

ical Campaigns . 7

2.2.1 Review of Heterogeneous Treatment Effect Models 8

2.2.2 Status Quo Methods for Building and Deploying Heterogeneous

Treatment Effect Models . 9

2.3 Diagnostics for HTE Model Selection 13

2.3.1 Simulations to Validate the T-AUC Metric 18

2.3.2 Tuning a Random Forest using the T-AUC Metric 22

2.4 Uncovering Turnout Persuadability in Social Pressure GOTV Experi-

ments . 25

2.5 Conclusion . 32

ix

3 Validating Ensembles of Simulated Redistricting Plans 34

3.1 Introduction . 34

3.2 Simulation Methods for Evaluating Redistricting Plans 37

3.2.1 Random-Seed-and-Grow Simulation Methods 39

3.2.2 Markov chain Monte Carlo Simulation Methods 41

3.2.3 Evolutionary Algorithm Methods 44

3.3 Validation Exercises using FL25 . 45

3.4 General Tests for Evaluating Redistricting Simulation Methods 48

3.5 Conclusion . 54

4 fastLink: R Package for Fast Probabilistic Record Linkage 56

4.1 Introduction . 56

4.2 Overview of the fastLink Algorithm 58

4.2.1 The Model and Assumptions 58

4.2.2 The EM Algorithm . 59

4.2.3 Hashing for Efficient Memory Management 60

4.2.4 Reverse Data Structures for Field Comparisons 61

4.2.5 Parallelization and Random Sampling 64

4.3 Conducting Data Merges using fastLink 64

4.3.1 A Small-Scale Example . 66

4.3.2 Alternative Methods of Constructing Matching Patterns . . . 70

4.3.3 Incorporating Partial Match Categories 72

4.3.4 Random Sampling to Speed up Large-scale Data Merges . . . 73

4.3.5 Capturing Dependence between Linkage Fields 75

4.3.6 Finding Duplicates in a Single Data Set 76

4.4 Incorporating Auxiliary Information and Post-Processing Data Merges 77

4.4.1 Information on Migration Rates 78

4.4.2 Reweighting Match Probabilities Ex-Post with Name Frequencies 80

x

4.4.3 Enforcing a One-to-One Merge 81

4.5 Preprocessing Data Merges . 82

4.5.1 Cleaning and Harmonizing Strings 82

4.5.2 Blocking Data to Improve Merge Quality 87

4.6 Application — Party Switching in Brazil 91

4.7 Conclusion . 98

A Appendix for “Model Selection and Model Comparison for Predict-

ing Heterogeneous Treatment Effects” 107

A.1 Kunzel et al. (2018) Meta-Learners 107

A.1.1 Reasoning behind Y ∗i . 109

A.1.2 Simulation Setup . 110

B Appendix for “Validating Ensembles of Simulated Redistricting

Plans” 111

B.1 The Proposed Enumeration Algorithm 111

xi

List of Tables

2.1 Prior literature focusing on deriving estimators for conditional average

treatment effect models. 10

2.2 Table of estimates for HTE diagnostics, re-estimated over different

values of K. When re-estimating diagnostics across different values of

K, we can use simple weighted smoothing techniques such as LOESS

to estimate these diagnostics without having to balance between values

of K that are either too coarse or too fine. 18

2.3 Replication of Table 2 in Gerber, Green and Larimer (2008). While

the effects scale and N differ slightly from the original due to a pre-

processed replication file, the same substantively large effects are ap-

parent here. All estimated turnout shares are simple means calculated

within each treatment group. 27

xii

4.1 Validation of the TSE data merge using the CPF number. This ta-

ble shows the true classification accuracy of the exact matching strat-

egy (left) and fastLink-matching strategy (right) using the CPF unique

identifier. While the exact matching strategy minimizes false posi-

tives, it does so at the cost of a large number of false negatives — true

matches that were incorrectly classified as non-matches. In contrast,

while the fastLink matching strategy does slightly worse on the false

positive rate, it substantially out-performs an exact matching strategy

on the false negative rate. 96

xiii

List of Figures

2.1 Two graphical diagnostics for improving model building of HTE models 14

2.2 A diagnostic for assessing the robustness of the estimated T-AUC curve 16

2.3 Simulations validating the T-AUC as a model selection metric 20

2.4 Simulations comparing the transformed outcome metric to the T-AUC

metric for model selection. These simulations follow the same setup as

those presented in Figure 2.3. Here, the y-axis is the ratio between the

average correlation of the true MAFE and the T-AUC, and the average

correlation between the true MAFE and the MAFE between τ̂i and Y ∗i .

Any lines above 1 indicate that the T-AUC metric is outperforming

the transformed outcome metric, while lines below one indicate the

opposite. In most scenarios, the T-AUC outperforms the metrics based

on Y ∗i as a model selection metric. 22

2.5 Validating the T-AUC as a model selection metric 24

2.6 Visual diagnostic plots from the best-performing heterogeneous-

treatment effect model estimated on Gerber, Green and Larimer

(2008). The top-left plot is the T-AUC curve and the estimated

out-of-sample area, the top-right plot is the stack-ranking of the

model, and the bottom-left plot is the result of the randomization

test of the T-AUC curve. All results are out-of-sample from five-fold

cross-validation. 29

xiv

2.7 Visual diagnostic plots from scoring the data from Sinclair, McConnell

and Green (2012) using the best-performing model estimated on Ger-

ber, Green and Larimer (2008). The top-left plot is the T-AUC curve

and the estimated out-of-sample area, the top-right plot is the stack-

ranking of the model, and the bottom-left plot is the result of the

randomization test of the T-AUC curve. 30

2.8 Distribution of estimated treatment effects in Gerber, Green and

Larimer (2008) using best-performing model. This plot shows dis-

tributions of estimated treatment effects within each unique factor

level for age buckets and gender, and within a quantiling of a vote

propensity score. 31

2.9 Conditional average treatment effects by age bucket for Gerber, Green

and Larimer and Sinclair, McConnell and Green. Both experiments

show similar patterns of heterogeneity by age, although treatment ef-

fects for each age bucket in Sinclair, McConnell and Green are lower

than those in Gerber, Green and Larimer. This common heterogeneity

helps explain why models built on one of the two experiments extrap-

olate well to the other experiment. 32

3.1 Maps of the FL25 subset . 46

3.2 Plot of the distribution of the number of enumerated plans within 1% of

population parity (left plot) and of the standard deviation of precinct

populations in the 25-precinct test maps (right plot) 47

xv

3.3 Runtime comparison of the spanning tree enumeration procedure, as

implemented in redist.enumerate() (Fifield, Tarr and Imai, 2015), and

the ZDD enumeration procedure, as implemented in the enumpart li-

brary (Kawahara et al., 2017). Each boxplot represents the method’s

runtime across 50 trials. As the number of geographic units of the un-

derlying map increases, the spanning tree procedure scales increasingly

poorly relative to the ZDD method. 50

3.4 Results from the proposed validation procedure at three different pop-

ulation parity levels . 52

3.5 Results from the proposed validation procedure at three different pop-

ulation parity levels, using the Kullback-Leibler divergence measure . 53

4.1 Core structure of the fastLink package as of version 0.4.1. 65

4.2 Plot of matching patterns using posterior match probabilities from

fastLink . 70

4.3 Party-switching by municipality in Rio de Janeiro 98

xvi

Chapter 1

Introduction

Large-scale administrative data and new computational resources have fundamentally

changed both the study and practice of electoral politics. For scholars, these new re-

sources have opened up new avenues of study for understanding public opinion and

representation in American politics, the dynamics of international organization net-

work formation in international relations, the success or failure of different autocratic

censorship strategies in comparative politics, and countless other questions that have

furthered our understanding of the political decisions of individuals, elites, and insti-

tutions. For political practitioners, these resources have led to an explosion of new

voter targeting and communication efforts, with campaigns and party organizations

aggressively investing in new data sources and analytical strategies to learn as much as

possible about the American voting public. As these new methods and data continue

to proliferate and change political science and political practice, validation efforts to

ensure their validity and accuracy have become increasingly important. This disser-

tation develops new methods that lie at the intersection of academic political science

and commerical political targeting, and it strives to take this issue of methodological

validation and data integrity seriously.

1

In Chapter 2, “Model Selection and Model Comparison for Predicting Heteroge-

neous Treatment Effects,” I develop a set of model-building heuristics and diagnostics

for statistical models of heterogeneous treatment effects (HTE), which are used by

scholars to test theories about differential responses to interventions and by prac-

titioners to target political communication to the most responsive voters. Unlike

standard predictive models, HTE models are difficult to validate and tune because

the outcome of interest is the individual-level treatment effect, which is not observed

by the researcher. As a result, standard model-building techniques such as out-of-

sample validation on mean-squared error or the ROC curve cannot be directly applied.

I adapt an HTE model visualization technique called the uplift curve from the mar-

keting science literature as a metric for model comparison, and I validate it as an

informative diagnostic test for model selection, criticism, and tuning. I also intro-

duce a graphical stack-ranking validation plot that can be used to visualize areas of

mis-fit along the estimated prediction space. Finally, I apply the new diagnostic tests

to build and analyze heterogeneous treatment effects in two canonical studies of social

pressure get-out-the-vote mailers, and I find significant predictive overlap between the

two experiments. The techniques introduced in this chapter are implemented in the

open-source R package, hetlearner.

Chapter 3, “Validating Ensembles of Simulated Redistricting Plans,” introduces

new validation techniques to ensure the accuracy and representativeness of ensembles

of simulated redistricting plans. New computational resources have simultaneously

allowed partisan officials to more accurately ensure certain electoral outcomes by

redrawing congressional districts, while also giving scholars new tools to study the

consequences of this political manipulation. One of these tools, redistricting simula-

tion, leverages these computational resources to draw large numbers of counterfactual

redistricting plans that satistfy certain legal and political constraints, and they have

become an important class of evidence when redistricting plans are challenged in

2

court. However, it is unclear whether these simulated redistricting plans are a truly

representative sample from the underlying distribution of valid redistricting plans. I

propose validating redistricting simulation methods on small test maps sampled from

actual states where all possible valid redistricting plans can be accurately enumerated,

and I use newly developed methods from the computer science literature to scale up

the size and scale of the enumeration datasets. I apply these new validation tests to

two prominent classes of redistricting simulators, and give some practical suggestions

for how these tests can be integrated into the legal and scholarly analysis of redis-

tricting. These new validation tests are implemented in the open-source R package,

redist.

Chapter 4, “fastLink: R Package for Fast Probabilistic Record Linkage,” is a prac-

tical guide to conducting probabilistic record linkage using the open-source R package

fastLink. Political scientists and practitioners frequently merge data sets to answer

new questions and more effectively measure traits of the voting public, but these data

often do not have a unique identifier such as social security number that can be used

for merging. Instead, researchers and practitioners either use ad-hoc exact matching

on fields such as first name, last name, address, and birth date that can have high

error rates under common scenarios, or they rely on proprietary methods that are

expensive and not transparent. fastLink is a fast implementation of the canonical

Fellegi-Sunter probabilistic record linkage model that can readily handle misspellings

and administrative errors in record linkage, while also scaling to much larger data

sets. I briefly review fastLink and the computational improvements it implements,

and I then walk through several applied data examples using the software that il-

lustrate its preprocessing, merging, and inspection functionalities. Finally, I apply

the proposed workflow and software to a validation exercise using data on local-level

politicians in Rio de Janeiro, Brazil, where I use fastLink to analyze rates of party

3

switching across election cycles. This chapter is adapted in part from coauthored

work with Ted Enamorado and Kosuke Imai in Enamorado, Fifield and Imai (2017).

Taken together, these three essays advance the ability of scholars and practition-

ers to take advantage of exciting new data and computational resources, while also

improving the transparency and accuracy of analysis and scholarship.

4

Chapter 2

Model Selection and Model

Comparison for Predicting

Heterogeneous Treatment Effects

2.1 Introduction

Heterogeneous treatment effect (HTE) models are powerful tools for effectively tar-

geting new interventions towards the right populations. In political campaigns, only

some registered voters will be more likely to turn out to vote after speaking to a

campaign canvasser, while only a subset of social media users will be likely to spend

more time on platform after being reminded of their online interactions with a close

friend. By combining randomized experiments with predictive modeling, analysts can

use HTE models to not only target treatments to the most responsive subset of the

population, but also avoid delivering new features and interventions to individuals

predicted to respond negatively to a change in their environment.

However, unlike standard predictive models where the predictive quantity of in-

terest is a measured and observed outcome, the analyst never observes the individual-

level treatment effect for any observation when building HTE models. This makes

5

standard model selection and model comparison techniques, such as mean squared

predictive error or the Area-under-Curve (AUC) metric, impossible to use. As a

consequence, there is little agreement on what a model-building and model-selection

workflow should look like for HTE models.

This paper aims to provide a framework for model building and model selection

for HTE models to aid practitioners in choosing the most appropriate estimator and

algorithm for their application. It introduces a set of heuristic graphical diagnos-

tics that can be used to assess model fit for HTE models despite not observing the

individual-level treatment effect, as well as an area-under-curve diagnostic that can

be used as a model comparison metric. These diagnostics can be applied regardless of

the estimating algorithm used, and can be used either to compare across estimating

algorithms, or to compare model specifications conditional on the estimating algo-

rithm chosen. I also propose a simple workflow that uses these graphical diagnostics

to build and select heterogeneous treatment effect models that accurately predict

treatment effects out-of-sample.

Lastly, I apply these estimators to an influential literature on social pressure treat-

ments for encouraging voter turnout, to see if treatment effects predicted on one

experimental sample generalize to new experiments. Starting with Gerber, Green

and Larimer (2008), an extensive literature has studied treatments designed to place

public pressure on the voter to turn out to vote, often using the threat of postcards

mailed post-election that make public the voting histories of the voter and their neigh-

bors. I first use HTE models to predict treatment heterogeneity in the original social

pressure experiment, which was conducted in a low-salience election in Michigan in

2006. Since then, numerous social pressure Get-Out-the-Vote (GOTV) mailers have

been sent and tested across the country and across electoral contexts. I find that in

similarly low-salience contexts, the same models predict the patterns of heterogeneity

fairly well, and that the estimated treatment effects can help discover the underlying

6

source of shared heterogeneity. This paper then concludes with a set of recommen-

dations for building and deploying HTE models, either for prediction in industry or

for academics characterizing patterns of heterogeneity.

2.2 Heterogeneous Treatment Effect Models in

Political Science and Political Campaigns

On political campaigns, HTE models play a specialized role in helping direct mail,

digital, in-person, and television persuasion and GOTV efforts. For example, Presi-

dent Obama’s 2012 re-election campaign deployed a massive persuasion experiment

of over 500,000 voters (Hersh, 2015, 151-153) to gather data for HTE model-building,

which was then used to target vote persuasion mail and campaign contact. Although

the size and scale of that particular experiment make these models out-of-reach for

most campaigns, national political organizations such as the DNC/RNC, DGA/RGA,

unions, and advocacy groups can and do made use of HTE models to direct their con-

tact with voters and the broader public.

More generally, this research is directly inspired by the use of Experimentally In-

formed Programs (EIPs) in political campaigns. As discussed by Kalla and Broock-

man (2018), an EIP is a small-scale experiment run to identify (1) whether a treatment

moves the electorate in the aggregate and (2) whether there is heterogeneity in re-

sponsiveness to the treatment that can be used to better target its delivery to the

full electorate. In political campaigns, the full EIP modeling flow is:

1. Define treatment (or treatments) of interest for testing

2. Sample small portion of the target voter universe from the voter file

3. Randomly assign treatment to the sample, and attempt to deliver treatment

4. Attempt to survey voters in the sample after receipt of the treatment

7

5. Build HTE model on survey data linked back up to covariates in voter file

6. Score entire voter file on the model

7. Use model to inform allocation of the treatment to most responsive voters, while

suppressing treatment for voters modeled to show backlash effects

In this project, I am particularly concerned with items 5, 6, and 7, although optimal

survey design and power analysis for HTEs are both important open questions. In

addition, since the final product of the EIP is to score the entire voter file using

the estimated model, it is necessary that the score and the observed patterns of

heterogeneity have strong external validity.

2.2.1 Review of Heterogeneous Treatment Effect Models

HTE models attempt to estimate the conditional average treatment effect (CATE) of

a treatment Ti, which here can take the value of either 0 (voter does not receive the

treatment) or 1 (voter receives the treatment). The CATE is formally defined as

τi = E(Yi(Ti = 1)− Yi(Ti = 0) | Xi = xi)

or the expected difference between counterfactual outcomes Yi(Ti) under treatment

and control, conditional on covariates xi. Importantly, we never observe both counter-

factual outcomes for any given unit (Holland, 1986), meaning that the true individual-

level treatment effect is never observed for any unit. This makes building a model

to predict CATE uniquely difficult. In a standard predictive model, the analyst can

use train-test splits to compare out-of-sample predictions of a predicted outcome,

Ŷi, against the true outcome Yi, in order to select the model that maximizes out-of-

sample predictive performance. This is not possible in HTE models, given that the

predictive target is the difference between counterfactual outcomes for a given unit

but only a single counterfactual outcome is observed for each unit.

8

Although the researcher cannot directly observe τi for any individual unit, they

can still build statistical models to try and measure it. These often take the form of

training some sort of statistical model fτ (·) where

Yi = fτ (Xi, Ti)︸ ︷︷ ︸
Model prediction

+ εi︸︷︷︸
Model error

Ŷi = fτ (Xi, Ti)

The statistical model fτ (·) can either be a single model or a series of models, which

I discuss in further detail in Section 2.2.2. We can then generate an estimate of the

CATE, τ̂i, as

τ̂i = Ŷi|Ti=1 − Ŷi|Ti=0

= fτ (Xi = xi, Ti = 1)− fτ (Xi = xi, Ti = 0)

which is simply the difference in the predicted outcomes for unit i when setting

treatment status to 1 versus setting treatment status to 0, conditional on observed

covariates xi.

2.2.2 Status Quo Methods for Building and Deploying Het-

erogeneous Treatment Effect Models

To date, most research into HTE’s has focused on deriving algorithms for estimat-

ing τ̂i and fτ (·). A non-exhaustive list of studies introducing new CATE estimators

can be found in Table 2.1, which roughly divides proposed estimators into four cat-

egories. Tree models rely on recursive partitioning methods to find subgroups with

maximally heterogeneous treatment effect estimates, while sparse models use either

Bayesian or non-Bayesian methods coupled with deep interactions between treat-

ment indicators and pre-treatment covariates along with variable selection techniques.

9

Ensemble methods follow the super learner framework introduced in van der Laan,

Polley and Hubbard (2007) for prediction problems, where the researcher constructs

many different models and then weights their contribution to the final prediction

by their out-of-sample predictive error relative to the observed outcome. Instead of

applying these weights to multiple predictions of the outcome, ensemble methods ap-

ply the weights to multiple predictions of the CATE from different models. Lastly,

Bayesian models for HTE’s is somewhat of a catch-all — Lam (2013) derives a Gibbs

sampler that incorporates imputation of the missing counterfactual outcomes into es-

timation, while Shiraito (2016) places HTE estimation in a non-parametric Bayesian

framework by utilizing Dirichlet process priors and making latent group membership

a function of pre-treatment covariates.

Class of Model Relevant Estimators and Algorithms

Tree Models Zeileis, Hothorn and Hornik (2008); Hill (2011); Imai and
Strauss (2011); Kern and Green (2012); Athey and Im-
bens (2016); Athey, Tibshirani and Wager (2017); Athey
and Wager (Forthcoming); Kunzel et al. (2018)

Sparse Models Imai and Ratkovic (2013); Ratkovic and Tingley (2017,
2018)

Ensembles Grimmer, Messing and Westwood (2017); Samii, Paler
and Daly (2017)

Bayesian Models Lam (2013); Shiraito (2016)

Table 2.1: Prior literature focusing on deriving estimators for conditional average
treatment effect models.

Kunzel et al. (2018) take a step back from the estimator-deriving literature to

summarize existing HTE models in terms of four related meta-learners, whose cat-

egorization I follow for the remainder of the paper. The four meta-learners can be

applied to any estimating function f(·), where f(·) may be a linear model, GLM’s,

regularized linear models such as LASSO or Elastic Net, or more non-parametric mod-

els such as BART, random forests, or neural networks.1 The first learner, which they

term the S-learner, first estimates a single model fSτ (X,T) predicting the observed Yi

1Formal algorithms for each learner can be found in Appendix Section A.1.

10

where the treatment indicator is included as a standard covariate. Then, predictions

are generated for each observations setting T to 1 and to 0 for each observations, so

that the final estimate of the individual-level treatment effect is

τ̂Si = f sτ (Xi, Ti = 1)
∧

− f sτ (Xi, Ti = 0)
∧

The second learner, the T-learner, estimates two separate models by modeling

the outcome as a function of covariates separately for treatment (fTτ |Ti=1(Xi)) and

control (fTτ |Ti=0(Xi)) groups. This modeling strategy follows the logic of work such

as Bansak (2018), which advocates sample-splitting by treatment group rather than

pre-treatment moderating variables in order to estimate unbiased causal moderation

effects. The estimate of the CATE is then generated as

τ̂Ti = ̂fTτ |Ti=1(Xi)− ̂fTτ |Ti=0(Xi)

The third learner, called the F-learner, relies on a transformation of the outcome

variable examined in Athey and Imbens (2016) (among others) where Y ∗i = Yi ×
Ti−e(Xi)

e(Xi)(1−e(Xi))
, and where e(Xi) is an estimate of the propensity score. This transformed

outcome can be easily shown to equal τi in expectation2 — however, it is known to

be an inefficient estimate of the individual-level treatment effect as it does not use

the treatment group information beyond the transformation of the outcome variable.

The F-learner algorithm is straightforward — a model fFτ (·) is trained against the

transformed outcome Y ∗i , and then the resulting estimate of the CATE is

τ̂Fi = f̂Fτ (Xi)

2This is shown in Appendix Section A.1.1

11

Last, Kunzel et al. (2018) introduce the X-learner, which uses two separate stages

of estimation. The first stage follows the T-learner by predicting the outcome as a

function of covariates for the treatment and control groups separately. Then, out-

comes are predicted for the treated observations using the control group model and

for the control observations using the treatment group model, and residuals ηi are

calculated. Finally, the residuals are predicted separately for each treatment group

(fXτ |Ti=1(Xi) and fXτ |Ti=0(Xi)) as a function of covariates. The final prediction is then

τ̂Xi = e(Xi)f
X
τ |Ti=1(Xi)
∧

+ (1− e(Xi))f
X
τ |Ti=0(Xi)
∧

where e(Xi) is an estimate of the propensity score.

Despite the growing number of estimation methods for HTEs in the existing liter-

ature, little attention has been paid to the problem of model comparison and model

selection for them. Unlike standard predictive models, there is no standard metric for

evaluating the quality of out-of-sample predictions from competing HTE estimators

and model specifications, given that the predictive quantity of interest is unobserved.

Most papers on HTE models instead focus on simulations to show the performance of

the proposed method — there, counterfactual outcomes can be carefully generated in

line with an exact specification of the data generating process, allowing researchers to

observe the individual-level treatment effect and thereby benchmark using standard

model fit metrics such as mean-squared error and classification accuracy measures.

And while simulations are useful for understanding the performance of a proposed

method in controlled conditions, these comparisons provide little guidance to an an-

alyst looking to benchmark performance of multiple estimators on a train-test split

of experimental data.

Furthermore, the few papers in the HTE literature that do consider out-of-sample

performance as a means to tune the model or perform model selection do so in terms

12

of out-of-sample performance in predicting Yi, rather than τi. For example, Grim-

mer, Messing and Westwood (2017) build an ensemble of HTE models such that

τ̂i =
∑

mwmf̂
m
τ (Xi), but the weights wm are selected based on out-of-sample predic-

tive performance on Yi, rather than the individual-level treatment effect. The work

of Athey and coauthors (e.g. Athey and Imbens, 2016; Athey, Tibshirani and Wager,

2017; Athey and Wager, Forthcoming) takes the question of out-of-sample perfor-

mance more seriously, by formulating a method for explicitly evaluating out-of-bag

performance in random forest models on the estimated treatment effects rather than

the observed outcome. However, even here, their focus is more on choosing optimal

splits given the selected model rather than comparing across sets of candidate models.

To fill this gap in the literature, in the following section I introduce a set of graphical

diagnostics for understanding HTE model fit and mis-fit, as well as a new model

selection criterion to help researchers and analysts adjudicate between candidate sets

of HTE models for prediction.

2.3 Diagnostics for HTE Model Selection

In this section, I introduce a new metric for HTE models that can be used for model

comparison and selection, along with a graphical diagnostic for examining model fit

across all ranges of the estimated treatment effect. Both diagnostics operate by ex-

amining the observed Local Average Treatment Effect (LATE) among subsections of

the data defined by their estimated treatment effects. While the graphical diagnos-

tic, the ”stack-ranking” plot, simply checks that the observed LATE aligns with the

average estimated treatment effect across buckets of the estimated score, the pro-

posed model-selection metric, which I call the Treatment Area-under-Curve (T-AUC)

diagnostic, evaluates the ”lift” achieved by using the score versus random targeting

at different portions of the estimated treatment response curve. The researcher can

then select model specifications that maximize this lift, thereby concentrating the

13

0

1000

2000

0.00 0.25 0.50 0.75 1.00

Share of Sample

C
um

ul
at

iv
e

Li
ft

ov
er

 A
T

E

No Targeting With Targeting

(Area between Curves = 843.4)

Lift−over−Random Using Score

−4

0

4

8

0.25 0.50 0.75 1.00

Modeled Treatment Effect Quantile

O
bs

er
ve

d
an

d
M

od
el

ed
 T

re
at

m
en

t E
ffe

ct
s

Modeled Treatment Effect Observed Treatment Effect

Treatment Effects by Score Quantile

Figure 2.1: Two graphical diagnostics for improving model building of HTE models.
The left plot is the Treatment Area-under-Curve (TAUC) diagnostic, which measures
the ”lift” over random of targeting by the score at different portions of the estimated
treatment response scale. The area between the green line (observed lift through
targeting by score, LOESS fit across bins) and the blue line (observed lift if targeting
randomly, LOESS fit across bins) can be used as a model selection metric by selecting
the model specification that maximizes the targeting lift indicated by the area between
the curves. The right plot is the stack-ranking plot, where observations are binned
according to the estimated treatment response score. The blue line is a LOESS fit
across the bins of the observed treatment effect within each bin, while the green line
is a LOESS fit across the bins of the average estimated treatment effect within each
bin. Good model fit is indicated by closely overlapping curves.

highest-responding subjects at the top end of the score and the subjects most likely

to show backlash at the bottom end of the score.

First, I discuss the TAUC metric, which is the left-hand plot in Figure 2.1. Al-

though introduced originally in Naranjo (2012) and mentioned briefly in Gutierrez

and Gerardy (2016)3, its properties as a model selection technique for HTE models

have not been explored. The TAUC metric involves first binning (out-of-sample)

observations according to their estimated treatment response from the model and

assigning each observation a label k = {1, 2, . . . , K} where k = 1 indicates the high-

3It was also used as a graphical illustration of model lift in Imai and Strauss (2011)

14

est quantile of τ̂i and k = K indicates the lowest quantile. Then, for each bin k, I

calculate

L̂iftk =

(
1

|i : Ti = 1, ki ≤ k|
∑

i:Ti=1,ki≤k

Yi −
1

|i : Ti = 0, ki ≤ k|
∑

i:Ti=0,ki≤k

Yi

)
︸ ︷︷ ︸

Treatment effect in top k quantiles

× |i : ki ≤ k|︸ ︷︷ ︸
observations in top k quantiles

Each point along the curve is a measure of the estimated cumulative lift achieved if

the top k bins of τ̂i had been assigned the treatment, given the average treatment effect

among that subset of observations. This curve is compared against the cumulative

lift achieved by random targeting, which in bin k is simply equal to the average

treatment effect across the whole sample multiplied by the number of observations

in bins 0 through k. These quantities are equal when k = 0 (cumulative lift of 0;

no observations treated) and when k = K (cumulative lift is ATE × N ; estimate

of cumulative lift if every observation given treatment). These two curves can then

be plotted against each other, and the area between the two curves can be easily

estimated as a measure of the model’s lift-over-random targeting. I refer to this area-

between-curves as the Treatment Area-under-Curve (T-AUC) metric throughout the

rest of the paper. In Subsections 2.3.1 and 2.3.2, I show how the T-AUC metric can

be used as a model selection and model comparison metric.

We can also test the robustness of the T-AUC metric using straightforward ran-

domization inference techniques. We can randomly shuffle the labels k and re-

calculate the T-AUC many times, which gives us a distribution of what T-AUC

would be under the null hypothesis that the model is doing no better than random

targeting. Figure 2.2 shows the results of this exercise on the same simulated data

used to create Figure 2.1, across 250 random shufflings of the labels. As expected, the

null distribution of the T-AUC under random targeting is centered around 0, which

15

0

10

20

30

40

0 200 400 600 800

Area between Curves

N
um

be
r

of
 B

oo
ts

tr
ap

pe
d

S
am

pl
es

p−Value = 0 (Red Line is True Value of Test)

Randomization Test using Area between Curves

Figure 2.2: A diagnostic for assessing the robustness of the estimated T-AUC curve.
In this diagnostic, we re-estimate the T-AUC after shuffling the score ordering of the
observations R many times. This gives an empirical distribution of the T-AUC on the
data that we would expect under the null hypothesis that the estimated score does
no better than random targeting. We can then calculate the proportion of T-AUC
estimates that are equal to or greater than the true T-AUC, which can be interpreted
as a p-value assessing the probability that we would observe a T-AUC estimate as
large as or larger than what we get from targeting by the score compared to the null
hypothesis of random targeting.

is what we would expect if the score was sorting no better than random. In contrast,

the true T-AUC from the score is well outside the range of the null distribution. We

can also calculate a p-value of the probability that we would observe a T-AUC this

extreme or more under the null hypothesis that the score were doing no better than

random targeting over R random permutations of the score, as

pTAUC =

∑
R 1{TAUCr ≥ TAUCtrue}

R

Another metric for assessing HTE model fit is the stack-ranking diagnostic, de-

picted on the right side of Figure 2.1. The stack-ranking diagnostic visualizes whether

16

the out-of-sample predictions τ̂i align closely with the true values of τi — as τi is un-

observable, we instead compare the mean of τ̂i in subsets of the data against the true

average treatment effect in the same subset of the data. In a correctly-specified model,

the mean scores and the true ATE in each subset should be equal to each other. Like

the T-AUC diagnostic, we first bin (out-of-sample) observations according to their

estimated treatment response from the model and assigning each observation a label

k = {1, 2, . . . , K} where k = 1 indicates the lowest quantile of τ̂i and k = K indicates

the highest quantile. Then, for each label k, we calculate:

τ̂k =
1

|i : ki = k|
∑
i:ki=k

τ̂i

ATEk =
1

|i : Ti = 1, ki = k|
∑

i:Ti=1,ki=k

Yi −
1

|i : Ti = 0, ki = k|
∑

i:Ti=0,ki=k

Yi

Then, by plotting ATEk and τ̂k against each other, we can diagnose where the

out-of-sample predictions from the HTE model are mis-fit against the true value of

the ATE in different cuts of the data.

Both the T-AUC and the stack-ranking graphical diagnostic require choosing the

parameter K, which is the number of quantiles to cut the data on using τ̂i. This is

a difficult tradeoff for the applied researcher — choosing K to be very coarse gives

more precise subgroup estimates but risks smoothing over real mis-specification in the

data, while choosing K to be very fine may reveal mis-fits in the data that are simply

noise. To avoid this balancing act by the researcher, I repeat all calculations starting

with K = 2 and increasing it until K = 20, storing all estimates. This returns the

table shown in Table 2.2, where for the T-AUC diagnostic Estimatek is both TAUCk

and ATE × N
k

, while for the stack-ranking diagnostic it is τ̂k and ATEk. I then run

a simple weighted LOESS of Estimatek onto k/K, weighted by N to up-weight the

importance of estimates made with larger sample sizes. The final T-AUC metric is

the area between the predictions of the curves returned by the LOESS fit.

17

k K Estimatek N

1 2 . . . Sample Size/2
2 2 . . . Sample Size/2
1 3 . . . Sample Size/3
...
3 3 . . . Sample Size/3
...
1 20 . . . Sample Size/20
...
20 20 . . . Sample Size/20

Table 2.2: Table of estimates for HTE diagnostics, re-estimated over different values
of K. When re-estimating diagnostics across different values of K, we can use simple
weighted smoothing techniques such as LOESS to estimate these diagnostics without
having to balance between values of K that are either too coarse or too fine.

2.3.1 Simulations to Validate the T-AUC Metric

The T-AUC metric, introduced in the previous section, provides both a graphical

summary of the efficiency of the model as well as a single numerical summary of

its efficiency over random targeting. In this section, I validate the estimated area

between the targeting-by-score curve and the targeting-by-random curve as a model

selection criterion using simulation evidence. The proposed metric successfully selects

the correct model in many settings, although it struggles when the data-generating

process in the model for τi is complex and both the data-generating process and the

covariate set are misspecified. I also compare the T-AUC metric against another

metric that selects the model that minimizes the average distance between the esti-

mated score and the transformed outcome used in the F-learner model. Both perform

well, although the T-AUC does slightly better under a larger set of data-generating

processes.

To assess the model selection performance of the proposed metric, I generate 1000

simulated data sets using Algorithm 5. For each simulated data set, I run each of the

four learner algorithms as a linear model and a BART model under the default settings

18

for both estimators. Given that there are two levels of the data-generating process

— one for the outcome model of Yi(0) and another for the heterogeneity model of τi

— I also systematically omit a variable relevant to the outcome model, the τi model,

or a variable relevant to both models simultaneously to examine the performance of

the proposed metric under misspecification. Out-of-sample, I then calculate the mean

absolute forecasting error of the model predictions (which is unobservable outside of

simulations), defined as

MAFE =

∑N
i=1 |τi − τ̂i|

N
,

as well as the T-AUC. Here, the MAFE represents a type of ground truth, in that it

is a measure of model accuracy that we would likely use if we were able to actually

observe the out-of-sample τi — therefore, if the T-AUC is selecting similar models

that we would select if we were able to rely on MAFE, then it is a doing a good job

as a proxy measure of model performance. I then store the correlation between the

MAFE and the TAUC, where a correlation closer to -1 suggests that the T-AUC is

performing as well as the true and unobserved MAFE as a measure of model accuracy,

even without observing the true target outcome. I also store whether the specification

that minimizes the true MAFE is also one of the top two model specifications that

maximizes the T-AUC. The results are shown in Figure 2.3.

In the top row, the simulation results show that the out-of-sample T-AUC and

MAFE correlate closely in most scenarios, with most simulations averaging a rank

correlation of around -0.70 or lower. Only when the DGP for τi is misspecified and

complex (blue and yellow lines, right-hand column), and the correlation between the

excluded and included variables in the τi model very low, does the T-AUC start to

struggle as a model selection metric. In other scenarios, including when the outcome

DGP is complex and the DGP for τi is simple, the T-AUC effectively orders the

candidate models in line with the MAFE had it been observed. The bottom row also

19

OMV Level: Outcome Model OMV Level: Shared OMV Level: Tau Model
C

orr(TA
U

C
, M

A
F

E
)

P
r(C

hoose Top 2 M
odel)

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

0.75

0.80

0.85

0.90

ρ

Complex Outcome
 Complex Tau

Complex Outcome
 Linear Tau

Linear Outcome
 Complex Tau

Linear Outcome
 Linear Tau

Performance of the T−AUC Metric Under Misspecification

Figure 2.3: Simulations validating the T-AUC as a model selection metric. Each
panel represents a different misspecification mechanism (misspecified outcome DGP,
both DGPs misspecified, τi DGP misspecified) and each line represents a different
data-generating process for the simulations. The x-axis indicates how correlated
the misspecified and included covariates are, and the y-axis in the top row shows
the average out-of-sample correlation across 1000 simulated data sets, where lower
correlation indicates better T-AUC performance. In the bottom row, the y-axis shows
how frequently across 1000 simulated data sets the model specification that minimizes
the true MAFE is also one of the top two best-performing model specifications as
measured by T-AUC, where higher values indicate better model performance.

shows that the T-AUC is effectively choosing the best-performing candidate models,

as measured by whether the specification that minimizes the MAFE is also one of

the top two specifications as measured by T-AUC. In most data-generating scenarios,

this occurs over 80% of the time across the 1000 simulated data sets.

We can also constrast the T-AUC with another test statistic for HTE model

performance — minimizing the disparity between the modeled τ̂i and the transformed

outcome Y ∗i proposed in the F-learner. As a brief review, the F-learner is attractive as

a modeling strategy for HTE models because the transformed outcome, Y ∗i , is equal

20

to the individual-level treatment effect in expectation4, where

Y ∗i = Yi ×
Ti − e(Xi)

e(Xi)(1− e(Xi))

In theory, an attractive estimator of τi would then be to regress Y ∗i onto covariates

using the estimator of choice — however, as discussed in Athey and Imbens (2016),

the fact that this estimator does not use the treatment assignment information beyond

the transformation of the outcome causes much of this inefficiency. However, we can

try to use Y ∗i as a model selection criterion independent of its use in the F-learner,

where the analyst selects the model that minimizes the aggregated distance between

τ̂i and Y ∗i as measured using mean absolute error, mean squared error, or some other

distance measure. I run the same set of models as the simulations presented in

Figure 2.3, but in addition to calculating the T-AUC, I also calculate

MAFEY ∗ =

∑N
i=1 |τ̂i − Y ∗i |

N

for each model run. I then take the correlation between MAFEY ∗ and the true MAFE

across all models run for a given simulation, where higher levels of correlation indicate

better performacne of the tranformed outcome metric. I also store how frequently the

model specification that minimizes the true MAFE is one of the two specifications

that does best as measured by MAFEY ∗ .

Figure 2.4 gives the results of the comparison. In most scenarios, the T-AUC

metric outperforms the transformed outcome-based metric for model selection, in

that it correlated closer with the true MAFE than the transformed outcome metric

(top row) and more frequently identified the model that minimized the true MAFE as

one of the top-two performing models as measured by T-AUC (bottom row). When

the τi DGP is complex and the left-out covariates were uncorrelated with included

4This is shown in Appendix Section A.1.1

21

OMV Level: Outcome Model OMV Level: Shared OMV Level: Tau Model
|C

orr(TA
U

C
, M

A
F

E
)| /

 |C
orr(T

F, M
A

F
E

)|
P

r(Top 2 M
odel | TA

U
C

) /
 P

r(Top 2 M
odel | T

F
)

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

0.7

0.8

0.9

1.0

1.1

0.96

1.00

1.04

1.08

ρ

Complex Outcome
 Complex Tau

Complex Outcome
 Linear Tau

Linear Outcome
 Complex Tau

Linear Outcome
 Linear Tau

Comparing T−AUC Metric to Transformed Outcome for HTE Model Selection

Figure 2.4: Simulations comparing the transformed outcome metric to the T-AUC
metric for model selection. These simulations follow the same setup as those presented
in Figure 2.3. Here, the y-axis is the ratio between the average correlation of the true
MAFE and the T-AUC, and the average correlation between the true MAFE and
the MAFE between τ̂i and Y ∗i . Any lines above 1 indicate that the T-AUC metric
is outperforming the transformed outcome metric, while lines below one indicate the
opposite. In most scenarios, the T-AUC outperforms the metrics based on Y ∗i as a
model selection metric.

covariates, however, the transformed outcome approach slightly outperforms T-AUC

as a model selection criterion.

2.3.2 Tuning a Random Forest using the T-AUC Metric

Having showed that the T-AUC metric can be a useful metric for model selection,

I now provide a practical illustration of how it can be used — tuning a random

forest estimator of τ̂i. Random forests, which were introduced in Breiman (2001), are

powerful predictive models based on recursive partitioning methods, which iteratively

select decision rules that maximize the ability to predict an outcome of interest.

Unlike standard recursive partitioning models such as CART, which grow only a

22

single “decision tree”, random forests grow many trees using random sub-samples of

both the data and of the explanatory variables, which help prevent over-fitting. The

final prediction for a given observation is a weighted average of the predictions of all

of the trees grown by the random forest.

Despite their good predictive performance, random forests have many tuning pa-

rameters that are difficult to choose well if there is no way to assess out-of-sample

predictive performance. These parameters include the number of trees to grow to

form the final ensemble, the maximum number of “nodes” to grow each tree to (each

observation grouped into a node gets the same prediction — fewer nodes guard against

overfitting at the cost of additional bias), and the number of covariates to test to make

each split. This issue is not just specific to random forests — other tree-based mod-

els, such as GBMs and BARTs, have many tuning parameters that are often chosen

through out-of-sample validation exercises. For the random forest, these parameters

include the number of trees to grow in the ensemble, how deep to grow each tree, the

number of rows to sample in each new split of the tree, and the number of columns

to sample in each new split of the tree.

Here, I use the T-AUC metric calculated on simulated out-of-sample data to

choose the best-performing set of tuning parameters (maximum number of nodes to

grow and the number of covariates to sample) in a setting where the relationship

between covariates and the true treatment effect is highly non-linear and interactive,

thereby requiring non-parametric methods such as random forests or GBM’s.5 I first

run the random forest given a certain tuning parameter setting on a 2500-observation

subset of the data, and then generate predictions on an out-of-sample subset of 2500

observations. I then calculate both the T-AUC on the out-of-sample subset, as well

as the true Mean Absolute Forecasting Error.

5I generate this data set using a single iteration of Algorithm 5, where ρ = .25, Yi(0) DGP is
complex, and τi DGP is complex.

23

4.75

4.80

4.85

4.90

1200 1400 1600 1800

Treatment Area−under−Curve
(Higher = Better)

M
ea

n
A

bs
ol

ut
e

F
or

ec
as

tin
g

E
rr

or
(L

ow
er

 =
 B

et
te

r)

Sampled
Covariates

2

5

7

Terminal
Nodes

2

3

5

Comparison of T−AUC and MAFE for Random Forest Tuning

−6000

−4000

−2000

0

0.00 0.25 0.50 0.75 1.00

Share of Sample

C
um

ul
at

iv
e

Li
ft

ov
er

 A
T

E

No Targeting With Targeting − Best Performing With Targeting − Worst Performing

Lift−over−Random Using Score

Figure 2.5: Validating the T-AUC as a model selection metric. The left-hand plot
shows the relationship between the T-AUC metric calculated out-of-sample against
the true out-of-sample Mean Absolute Error. Each point represents the out-of-sample
performance of a Random Forest HTE model run as an X-learner, where the colors
indicate the number of sampled covariates in each split and the shapes indicate the
maximum tree depth grown. The two measures strongly negatively correlate, sug-
gesting that the T-AUC can be effectively used as a model selection metric for HTE
models. The right-hand plot shows the T-AUC for the worst-performing model (red)
and the best-performing model (blue) relative to random targeting (black). Using
the T-AUC to select the hyperparameter settings results in a model that selects more
treatment-responsive individuals while avoiding treating negatively-responsive indi-
viduals.

Figure 2.5 shows the results of this test. In the left-hand plot, we can see that the

T-AUC and the true MAFE correlate extremely closely, at -0.95. Using the T-AUC

to select specifications for the random forest would give us the same specification

that minimizes the true MAFE, with a maxmimum tree depth of 5 and 7 sampled

covariates at each split. That the deepest trees that sample the most covariates

at each split performs the best is reflective of the highly interactive and nonlinear

DGP in both the outcome stage and the τ stage. The right-hand plot visualizes

the consequences of choosing the worst-performing model versus the best-performing

model using the T-AUC. The worst-performing model shows a positive cumulative

lift over the first 30% of the sample using the out-of-sample score estimates, before

24

returning negative cumulative treatment effects. In contrast, the best-performing

model still shows positive cumulative effects of the treatment after bringing in the

top 50% of the sample ordered by score, despite the average treatment effect across

the entire sample being negative.

2.4 Uncovering Turnout Persuadability in Social

Pressure GOTV Experiments

The previous sections introduced some practical methods for building and tuning

heterogeneous treatment effect models for targeting voters and consumers, and val-

idated the proposed metrics in a set of simulations. Here, I apply these diagnostics

and metrics to develop a model-building workflow that uncovers shared patterns of

treatment responsiveness in a series of social pressure Get-Out-the-Vote experiments.

The proposed workflow allows the researcher to compare across candidate models

while also visually assessing misspecification using the tools introduced in previous

sections.

I demonstrate these tools in the context of a set of experiments studying how

effectively Get-out-the-Vote (GOTV) mailers triggering feelings of social pressure can

motivate citizens to vote. This literature draws extensively from social psychology,

where researchers have found that increasing the prevalence of dominant social norms

can make individuals more likely to comply with those norms. Gerber, Green and

Larimer (2008) draw from this tradition to design a series of GOTV mailers that

gradually increase the amount of social pressure placed on the voter to turn out to

vote in a low-salience primary in Michigan taking place in 2006. They randomized

voters into five separate groups, including four treatment groups (ordered roughly by

level of social pressure exerted):

1. Control: No mailer.

25

2. Civic duty: Mailer emphasizes importance of civic duty of voting.

3. Hawthorne effect: Mailer tells voters that their voting behavior in upcoming

primary is being studied.

4. Self: Mailer reminds voter that vote history is public and reports the previous

voting history of voters in the household. Suggests that updated mailers will

be sent after election.

5. Neighbors: Mailer reminds voter that vote history is public and reports the

previous voting history of all voters in the neighborhood of the address. Suggests

that updated mailers will be sent after election.

Table 2.3 shows the results of the treatments. The left-most column shows the

baseline turnout rate as estimated in the control group. Each additional row reports

the results from treatments applying additional social pressure. As found in the initial

experiment, the most aggressive social-pressure treatments lead to massive increases

in turnout, with the Neighbors treatment inducing more than a 25% increase over

baseline turnout in the control group. However, the other treatments also lead to

substantively large increases in turnout. The standard academic experiment would

stop at this point, having identified a substantively and theoretically important ef-

fect. However, for a campaign looking to boost turnout by targeting these mailers,

a decision-maker may want to explicitly model these treatment effects for one of two

reasons — first, they may be budget-constrained, thereby requiring them to estimate

which members of the electorate will be most responsive to the mailer. Second, even

if the campaign is not budget-constrained, they may be wary of backlash effects and

may want to suppress voters expected to react poorly to the treatment.

Here, I use the tools proposed in previous sections to build a best-performing

heterogeneous treatment effect model on the Gerber, Green and Larimer data, which

I then apply to the data from another social pressure GOTV experiment conducted

26

Control Civic Duty Hawthorne Self Neighbors
% Voting 31.1% 33% 33.7% 36.1% 39.4%

N 184749 36903 37005 37011 36893

Table 2.3: Replication of Table 2 in Gerber, Green and Larimer (2008). While the
effects scale and N differ slightly from the original due to a pre-processed replication
file, the same substantively large effects are apparent here. All estimated turnout
shares are simple means calculated within each treatment group.

two years later by Sinclair, McConnell and Green. While both experiments were run

in low-salience election environments (a Michigan primary election in Gerber, Green

and Larimer, and a Chicago municipal special election in Sinclair, McConnell and

Green), they differ in the year conducted, the timing of the election, the baseline

level of turnout, and the level of government for the contested seat. Therefore, this

presents a hard test to discover any relevant patterns of treatment effect heterogeneity

that could generalize across experiments.

To build the model on Gerber, Green and Larimer (2008), I use the following

model-building workflow:

1. Clean and harmonize data to a common set of covariates between experiments:

• Treatment indicator: 0 for no mailer, 1 for either social pressure mailer

• Outcome: 1 if voted in relevant election, 0 if not

• Common covariates: gender, age buckets (18-35, 35-54, 55-69, 70+),

vote history dummies

2. Run treatment effect models with 5-fold cross-validation on following parame-

ters:

• Estimator: linear model, lasso-linear model, random forest

• Learner: F, S, X, F

27

• Random Forest Tuning Parameters: Number of trees grown (500,

1000, 1500), number of covariates sampled per split (2, 3, 5), maximum

nodes to grow per tree (2, 3, 5)

3. Average out-of-sample TAUC for each parameter set

4. Visually inspect out-of-sample TAUC, its robustness, and the stack-ranking on

best-performing model

5. Estimate model using best-performing model specifications on the full sample

from Gerber, Green and Larimer (2008)

6. Generate predictions from the model on Sinclair, McConnell and Green (2012)

The visual diagnostics from the best-performing model are shown in Figure 2.6.

Using the procedure described above, I selected a random forest X-learner growing

1000 trees, sampling two covariates at each split, and growing each tree to a maximum

of five terminal nodes. The T-AUC plot (top left) shows that the model gives targeting

performance that is strictly better than random across the entire estimated score

space, although it struggles to give much lift at the highest quantiles of the score.

Despite the poor performance at the top end of the score, the randomization test of

the T-AUC score (bottom left) suggests that the score is still doing much better than

fully random targeting.

This finding is echoed in the stack-ranking plot (top right), where we see that

the score struggles to distinguish between voters estimated to be in the top half of

treatment responsiveness as indicated by the non-monotonic green curve above the

50% quantile. In contrast, voters estimated to be in the bottom half of treatment

responsiveness appear to be tracking fairly monotonically with the observed ATE in

each cut. The model’s failure to capture the full range of treatment responsiveness

may be in part to the limited number of available covariates — any heterogeneity

28

0

5000

10000

15000

0.00 0.25 0.50 0.75 1.00

Share of Sample

C
um

ul
at

iv
e

Li
ft

ov
er

 A
T

E

No Targeting With Targeting

(Area between Curves = 885)

Lift−over−Random Using Score

0.000

0.025

0.050

0.075

0.100

0.25 0.50 0.75 1.00

Modeled Treatment Effect Quantile

O
bs

er
ve

d
an

d
M

od
el

ed
 T

re
at

m
en

t E
ffe

ct
s

Modeled Treatment Effect Observed Treatment Effect

Treatment Effects by Score Quantile

0

10

20

30

40

0 250 500 750

Area between Curves

N
um

be
r

of
 B

oo
ts

tr
ap

pe
d

S
am

pl
es

p−Value = 0 (Red Line is True Value of Test)

Randomization Test using Area between Curves

Figure 2.6: Visual diagnostic plots from the best-performing heterogeneous-treatment
effect model estimated on Gerber, Green and Larimer (2008). The top-left plot is the
T-AUC curve and the estimated out-of-sample area, the top-right plot is the stack-
ranking of the model, and the bottom-left plot is the result of the randomization test
of the T-AUC curve. All results are out-of-sample from five-fold cross-validation.

by partisanship or race, for example, that is not already captured by vote history,

age, or gender will go un-modeled here. Neymanian and Fisherian hypothesis tests

such as those proposed in Ding, Feller and Miratrix (2016) and Ding, Feller and

Miratrix (Forthcoming) can help detect this additional un-modeled treatment effect

heterogeneity.

Next, to test the generalizability of the estimated model, I predict the pattern

of treatment responsiveness in Sinclair, McConnell and Green (2012) and examine

their diagnostics. The results, presented in Figure 2.7, suggest that the pattern of

treatment responsiveness estimated from Gerber, Green and Larimer (2008) travels

well to new (and fully out-of-sample) data. This is illustrated most effectively in

the stack-ranking plot (top right) — the observed treatment effect increases nearly

perfectly monotonically along the estimated treatment responsiveness scale. While

there is an intercept shift relative to the estimated score, due to the difference in scale

between the baseline treatment effects between the two experiments, the estimated

and actual treatment effects within each cut of the score track each other closely.

Both the T-AUC and the randomization test of the T-AUC suggest that this finding

is fairly robust.

29

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00

Share of Sample

C
um

ul
at

iv
e

Li
ft

ov
er

 A
T

E

No Targeting With Targeting

(Area between Curves = 227.3)

Lift−over−Random Using Score

0.000

0.025

0.050

0.075

0.100

0.25 0.50 0.75 1.00

Modeled Treatment Effect Quantile

O
bs

er
ve

d
an

d
M

od
el

ed
 T

re
at

m
en

t E
ffe

ct
s

Modeled Treatment Effect Observed Treatment Effect

Treatment Effects by Score Quantile

0

10

20

30

40

−50 0 50 100 150 200

Area between Curves

N
um

be
r

of
 B

oo
ts

tr
ap

pe
d

S
am

pl
es

p−Value = 0 (Red Line is True Value of Test)

Randomization Test using Area between Curves

Figure 2.7: Visual diagnostic plots from scoring the data from Sinclair, McConnell
and Green (2012) using the best-performing model estimated on Gerber, Green and
Larimer (2008). The top-left plot is the T-AUC curve and the estimated out-of-
sample area, the top-right plot is the stack-ranking of the model, and the bottom-left
plot is the result of the randomization test of the T-AUC curve.

What is the source of this underlying shared treatment propensity? To better

understand the shared factor driving treatment response heterogeneity in these sep-

arate experiments, I first plot the distribution of estimated treatment effects within

factor levels. While this does not fully marginalize over other covariates, it nonethe-

less presents an initial descriptive glance at what factors are driving the sorting in

the model. I examine these distributions within the unique levels of gender and age

buckets, as well as quantiles of a turnout propensity score built by predicting turnout

in the 2002 general election as a function of covariates among the control group using

a random forest.

Figure 2.8 shows the distribution of predicted treatment responsiveness within

observed factor levels. There is very little noticeable heterogeneity in treatment re-

sponse across gender, and while the estimated treatment response increases somewhat

across quantiles of the vote propensity score, it remains fairly noisy. However, there

is clear heterogeneity by age that is apparent when plotting the distribution of the

estimates within age bucket. Treatment response propensity is far lower for younger

voters (18-35) than for middle-aged or elderly voters, and this propensity increases

nearly twofold when targeting voters aged 70+ versus voters aged 18-35.

30

vote_propensity

age_bin female

0.025 0.050 0.075 0.100

0.025 0.050 0.075 0.100

0

1

a_
18

_3
5

b_
35

_5
5

c_
55

_6
9

d_
70

[0
.0

49
2,

0.
83

]
(0

.8
3,

0.
87

](0
.8

7,
0.

92
9](0

.9
29

,0
.9

72
]

Estimated Treatment Effect

V
al

ue
 o

f V
ar

ia
bl

e

Distribution of Estimated Treatment Effects by Variable

Figure 2.8: Distribution of estimated treatment effects in Gerber, Green and Larimer
(2008) using best-performing model. This plot shows distributions of estimated treat-
ment effects within each unique factor level for age buckets and gender, and within a
quantiling of a vote propensity score.

This pattern is echoed in the raw data for both Gerber, Green and Larimer and

Sinclair, McConnell and Green, and appears to be the primary driver behind why

the model from the former extrapolates well to the latter data. Figure 2.9 shows

the raw conditional average treatment effects by age buckets separately for each ex-

periment. Both experiments show similar jumps over the baseline treatment effect

for older cohorts — when compared to the baseline treatment effect (for voters aged

18-34), older voters show anywhere between a 3-4 percentage point increase in treat-

ment responsiveness. Thus, the score estimated on the data from Gerber, Green and

Larimer, which captures this heterogeneity, extrapolates well to Sinclair, McConnell

and Green by successfully modeling these differences in treatment responsiveness.

31

0.000

0.025

0.050

0.075

0.100

18−34 35−54 55−69 70+

Age Bucket

Tr
ea

tm
en

t E
ffe

ct
 E

st
im

at
e

GGL (2008)

SMG (2012)

Shared Treatment Effect Heterogeneity

Figure 2.9: Conditional average treatment effects by age bucket for Gerber, Green and
Larimer and Sinclair, McConnell and Green. Both experiments show similar patterns
of heterogeneity by age, although treatment effects for each age bucket in Sinclair,
McConnell and Green are lower than those in Gerber, Green and Larimer. This
common heterogeneity helps explain why models built on one of the two experiments
extrapolate well to the other experiment.

2.5 Conclusion

While numerous methods have been proposed for estimating and measuring heteroge-

neous treatment effects, comparatively little work has studied how to conduct model

selection in order to choose the best-performing of a set of candidate heterogeneous

treatment effect models. This paper introduces a series of graphical diagnostics to

aid researchers and analysts constructing these models, as well as a new metric, the

Treatment Area-under-Curve, to aid in explicit model comparison even when the

outcome of interest is unobservable. I also provide practical advice on model build-

ing, analysis, and inspection for applied researchers and analysts seeking to construct

HTE models. Lastly, I propose a straightforward model-building workflow and apply

32

it to two separate social pressure Get-out-the-Vote experiments in order to analyze

shared patterns of heterogeneity between the two studies.

While this paper gives additional guidance on how to build robust and well-

performing heterogeneous treatment effect models, numerous questions still remain

understudied in the HTE modeling literature. Among these is the role of survey

design in creating high-quality training data. In political targeting, training data is

often created by running surveys linked back up to a voter file with either a survey-

embedded experiment or in-person delivered treatment, and recent research suggests

panel designs (Kalla and Broockman, 2018) can improve the efficiency of the estimated

sample average treatment effect, thus requiring less data for equivalent precision. One

question for HTE modeling is the impact this survey design choice has on the exter-

nal validity of the estimated score, especially in the presence of severe differential

non-response bias.

Another open question is how to conduct proper power analysis for an experiment

that will be used as training data for HTE models. Few recommendations exist

in the literature, especially since the ”hypothesis” to be tested and measured is not

completely clear in the context of treatment effect modeling. While the T-AUC metric

may be a possible component of a successful power analysis, I leave this question for

future research.

33

Chapter 3

Validating Ensembles of Simulated

Redistricting Plans

3.1 Introduction

Congressional redistricting, which is the practice of redrawing congressional district

lines following the constitutionally mandated decennial Census, is of major polit-

ical consequence in the United States. Redistricting fundamentally reshapes geo-

graphic boundaries that define a central class of representation and governance in

the American political system, and changes in those boundaries have major political

consequences. As a fundamentally political process, redistricting has also been ma-

nipulated to fulfill partisan ends, and recent debates have raised possible reforms to

lessen the role of politicians and the influence of political motives in determining the

boundaries of these political communities.

Starting in the 1960s, scholars began proposing simulation-based approaches to

make the redistricting process more transparent, objective, and unbiased (early pro-

posals include Vickrey, 1961; Weaver and Hess, 1963; Nagel, 1965; Hess et al., 1965).

While this research agenda lay dormant for some time, recent advances in computing

capability has led to a resurgence in proposals, implementations, and applications of

34

simulation methods to applied redistricting problems (e.g. Cirincione, Darling and

O’Rourke, 2000; McCarty, Poole and Rosenthal, 2009; Altman and McDonald, 2011;

Chen and Rodden, 2013; Mattingly and Vaughn, 2014; Liu, Tam Cho and Wang,

2016; Herschlag, Ravier and Mattingly, 2017; Fifield et al., 2018; Chikina, Frieze

and Pegden, 2017; Magleby and Mosesson, 2018). Furthermore, simulation methods

for redistricting play an increasingly important role in court cases challenging redis-

tricting plans. In 2017, simulation evidence was introduced and accepted by courts

hearing redistricting challenges in North Carolina (Common Cause v. Russo (2017):

Mattingly, 2017) and Pennsylvania (League of Women Voters v. Wolf et al. (2017):

Pegden, 2017; Chen, 2017; Cho, 2017). Given the pending challenges to maps in

Michigan and Virginia as well as the upcoming decennial Census in 2020, simulation

methods are likely to become an even more influential source of evidence for legal

challenges to redistricting plans at all levels of government.

Simulation methods are particularly useful because enumeration of all possible

redistricting plans in a state is computationally infeasible. In New Hampshire, for

instance, there are 1.4 x 1098 partitions of the state’s 327 voting precincts into two

congressional districts using the standard Stirling number calculation — a massive

number for a relatively simple redistricting problem. While statutory guidelines and

requirements such as district contiguity, population parity, compactness, and avoiding

splitting communities of interest reduce the number of solutions dramatically, the

resulting problem remains out-of-reach of full enumeration methods. Therefore, to

compare an implemented redistricting plan against a set of other candidate plans on

any number of partisan or representational outcomes, researchers and redistricting

reform advocates must resort to simulation methods.

However, despite the widespread use of redistricting simulation methods in court

cases, researchers rarely attempt to evaluate their accuracy — the ability of the

simulated sample, commonly referred to as an ensemble, to approximate the true

35

distribution of redistricting plans. This has profound implications for the quality of

expert testimony in court and for academic scholarship. If researchers cannot provide

evidence that the ensembles drawn using their simulation methods are representative

of the full space of valid redistricting plans, the comparison between an implemented

redistricting plan against a set of simulated plans on some partisan or representational

benchmark provides little to no scientific evidence. To address this shortcoming, Fi-

field et al. (2018) enumerate all possible partitions of 25 precincts from Florida into

three contiguous congressional districts (which I refer to as FL25) and compare the en-

semble from their algorithm against the true distribution of plans. Other researchers

(Magleby and Mosesson, 2018) have used FL25 to evaluate their own algorithms —

however, this data represents only a single set of precincts representing a specific

political geography, and may not be representative of other redistricting problems.

Furthermore, as noted by Magleby and Mosesson (2018), this data set is not par-

ticularly balanced — only six partitionings fall within standard levels of population

parity (±1.5%), and most fall above 10%.

To overcome this shortcoming, this paper proposes a set of tests based off of

enumeration methods that can be used to evaluate the accuracy of redistricting sim-

ulation methods. I propose randomly sampling many small maps of a pre-specified

size from actual electoral geographies such as state shapefiles, and then using enu-

meration methods to calculate all possible partitions of those maps into a prespecified

number of contiguous districs. Simulation methods can then be used on each sub-

set separately, and then the true and simulationed distributions can be compared

against each other in each sub-map using measures of distributional similarity such

as Kolmogorov-Smirnov tests, the Kullback-Liebler divergence, or Earth Mover’s dis-

tance. This proposal essentially repeats the exercise conducted in Fifield et al. (2018)

many times, in order to smooth over the idiosyncracies of FL25 and generalize the

process to other states and geographies. I note, however, that providing positive evi-

36

dence that a simulation method does well on these tests is not positive evidence that

it will perform well on redistricting problems the size of a full state — rather, failing

these tests on small redistricting problems such as FL25 is evidence that a simulation

method will scale poorly when applied to full states. These methods are implemented

in an open-source R software library, redist (Fifield, Tarr and Imai, 2015).

In the next section, I briefly review existing redistricting simulation methods, and

how they incorporate standard redistricting constraints such as compactness, popu-

lation parity, and respecting communities of interest. Section 3.3 discusses how FL25

has been used to evaluate redistricting simulation methods, as well as the short-

comings and idiosyncracies of that particular data set. Section 3.4 introduces the

proposed test, and applies it to the open-source redistricting simulators of Chen and

Rodden (2013) and Fifield et al. (2018). Finally, Section 3.5 concludes.

3.2 Simulation Methods for Evaluating Redistrict-

ing Plans

Since the early 2000s, a number of redistricting simulation methods have been pro-

posed for the purpose of drawing a large sample of redistricting plans respecting a

variety of statutory and political constraints. In this section, I briefly review the

broad classes of methods introduced to tackle the redistricting simulation problem,

along with how they incorporate in basic constraints and whether they provide any

theoretical guarantees on the representativeness of the samples they draw. Note that

I specifically examine redistricting simulation methods in this section — a parallel

line of research has developed redistricting optimization methods for drawing an ap-

proximately or exactly optimal plan given a particular objective function.1 I therefore

exclude them from the discussion here and the analysis to follow.

1Papers in this line of research include Garfinkel and Nemhauser (1970); Browdy (1990); Chou
and Li (2006); Fryer and Holden (2011), among others.

37

In the analysis to follow, I will use the following common notation and assump-

tions. I assume that any state has already been divided into a number of discrete

sub-units, frequently voting precincts or census block units. Each state can then

be represented as an adjacency graph G = {V,E}, where V = {{1}, {2}, . . . , {m}}

represents each discrete sub-unit as a node in an adjacency graph, and E is the set

of edges connecting these nodes, indicating that those two nodes are geographically

adjacent to each other. For example, if nodes i and j are adjacent to each other,

then an edge between them exists such that (i, j) ∈ E. A redistricting plan is simply

a partition of the node set V into n contiguous sub-units v = {V1, V2, . . . , Vn} by

removing a subset of the edge pairs (i, j) ∈ E.

Redistricting simulation methods generally fall into one of three categories.

Random-Seed-and-Grow methods (RSG) draw districts by randomly selecting n seed

nodes from the node set V , and randomly adding adjacent precincts to those seeds

until the desired number of districts are drawn using all geographic units. Then,

nodes are swapped between adjacent partitions until any thresholding requirements

on compactness, population parity, or other constraints are satisfied. Markov chain

Monte Carlo methods (MCMC) start with a valid partition v and then propose

a partition v∗ achieved by cutting some subset of the edges of v and reassigning

a subset of nodes to a new district. That proposal is then accepted according to

some probability determined by the characteristics of the map and the nodes cut,

and the accepted or rejected map is then used as the starting partition for the next

iteration of the algorithm. Finally, Evolutionary Algorithm methods (EA) declare an

objective function defined by constraints such as compactness, contiguity, population

parity, and other requirements and iteratively move towards solutions that reach

maxima of the objective function. This procedure is repeated many times to create

a distribution of plans. In the following sections, I discuss each of these methods in

more detail, as well as their benefits and shortcomings.

38

3.2.1 Random-Seed-and-Grow Simulation Methods

RSG methods represent the first viable simulation tools for effectively simulating

redistricting plans at scale. Initially introduced in Cirincione, Darling and O’Rourke

(2000) to analyze the 1990 South Carolina redistricting, RSG was further popularized

by the open-source BARD implementation for the R statistical programming language

(Altman and McDonald, 2011) and the work of Chen and Rodden (2013)2. In the

latter article, the authors use an RSG algorithm to simulate many redistricting plans

for the state of Florida to argue that Democratic voters are inefficiently clustered in

urban areas, leading to under-representation in the Florida congressional delegation

relative to their population share as a whole. Furthermore, Chen has used the same

method as an expert witness in judicial testimony for several court cases challenging

redistricting plans (in Rene Romo v. Rick Scott et al. (2012), League of Women

Voters et al. v. Detzner et al. (2015), and League of Women Voters v. Wolf et

al. (2017), among others). More recently, Magleby and Mosesson (2018) introduce

a number of computational improvements from the graph partitioning literature in

computer science to improve the computational efficiency of the RSG algorithm.

The basic RSG algorithm for partitioning a graph G = {V,E} into n precincts

is as follows. First, n “seed” nodes are sampled from the node set V , where each

seed node forms the basis for a separate district. Next, nodes adjacent to the district

are gathered, and a single one is added to its adjacent seed at random. This grows

the size of the district by 1. This process is repeated until each node is assigned to

a district, which Magleby and Mosesson (2018) refer to as “multinodes.” Finally, in

order to respect population, compactness, or other thresholds, nodes resting on the

boundary of two districts are iteratively and randomly swapped until the resulting

2An additional R implementation can be found in the redist.rsg() function in redist (Fifield, Tarr
and Imai, 2015).

39

districts fall within the specified thresholds. This process is repeated until the desired

number of samples is obtained.

RSG algorithms demonstrate several desireable properties. First, they are easy

to understand — for the purposes of evidentiary value in court, the intuition behind

the algorithms is easy to grasp. When the highest judge in the American judicial

system is prone to referring to quantitative measures of gerrymandering as “socio-

logical gobbledygook” (Chief Justice Roberts, oral arguments in Gill v. Whitford,

October 3rd, 2017), the importance of effectively communicating redistricting sim-

ulation methodologies in court cannot be overstated. Second, RSG methods return

a fully independent sample in each iteration. Other methods, particularly MCMC

methods, take the solution from the previous iteration as the starting point for the

next iteration, which lead to highly dependent samples that all look similar. RSG

methods have no such issue. Third, they can easily incorporate additional constraints

as thresholds. After the multinodes have been grown, RSG methods swap precincts

into adjacent districts and evaluate whether a given set of thresholds have been hit.

This set of thresholds can be as extensive and arbitrary as the researcher demands.

However, as noted by Fifield et al. (2018), the RSG algorithm is a heuristic algo-

rithm with no theoretical guarantees. That is, the literature on RSG methods can

provide no guarantees that the resulting sample from an RSG algorithm is a truly

random set of draws from the distribution of valid redistricting plans, given a set of

constraints. In a set of validation exercises using FL25 (Fifield et al., 2018, Figure

3), the authors show that RSG methods fail to return a representative sample of

redistricting plans even in a simple redistricting problem where all possible solutions

are known ex ante. Furthermore, these methods typically rely on rejection sampling

methods, where after a certain number of iterations a draw is discarded if it has not

yet satisfied all of the thresholds. This can be inefficient and cause the algorithm to

40

take a very long time to return the desired number of solutions if the thresholds are

numerous and difficult to hit, as is often the case in applied redistricting problems.

While much of the early literature on RSG methods has not attempted to validate

their simulation methods, Magleby and Mosesson (2018) advances the literature by

conducting two separate validation exercises. First, the authors calculate the mean-

median statistic (Wang, 2016) for every redistricting plan in FL25, as well as for the

plans returned by their simulation method. They then compare the mean, median,

standard deviation, and kurtosis for the true and simulated distributions of the statis-

tic, and formally test them with the Kolmogorov-Smirnov test to show that the two

distributions are substantively similar when population-parity thresholding at both

±10% and ±1.5%. For the latter constraint, the authors correctly note that FL25

is paritcularly unbalanced — very few maps satisfy this tight population constraint,

which is more reflective of true statutory requirements for implemented redistricting

plans. Second, the authors apply their method to a 100 x 100 grid where each node

has equal population, while imposing that both districts have equal population. They

then show that horizontal splits in the grid are as likely as vertical splits, which should

be expected if the method is sampling in an unbiased manner.

3.2.2 Markov chain Monte Carlo Simulation Methods

More recently, a number of scholars have used Markov chain Monte Carlo techniques

to simulate redistricting plans. The basic framework, which was developed indepen-

dently by Fifield et al. (2018) and Mattingly and Vaughn (2014), has been used in

expert testimony in redistricting cases in North Carolina (Common Cause v. Russo

(2017): Mattingly, 2017) and Pennsylvania (League of Women Voters v. Wolf et al.

(2017): Pegden, 2017). The basic MCMC algorithm proceeds as follows: first, the

algorithm starts at an existing partition v0 of the graph G. The algorithm then

randomly cuts the remaining edges E according to a pre-specified probability — if

41

the probability is set to one, G is completely shattered. A swap between districts

is then proposed by randomly selecting a set of connected node components on the

boundary of two districts. Finally, that swap is accepted or rejected according to a

specific probability, leading to a new partition v1. The entire process is then repeated

starting from v1.

A major benefit of MCMC methods are its theoretical properties. The acceptance

probability guarantees that the sample of plans will eventually converge to be a

uniform sample from the target distribution defined by the user.3 When no constraints

are applied, this is a simple uniform sample from the set of contiguous partitions of

G into n partitions. When constraints are applied, the target distribution becomes

gβ(v) =
1

Z(β)
exp

(
−β

∑
Vk∈v

L∑
`=1

w`ψ`(Vk)

)

where β ∈ [0, 1] is a temperature parameter governing the strength of the constraint,

and Z(β) is a normalizing constant. ψ`(Vk) is the value of the `’th constraint evaluated

on the k’th partition — for example, how far district k is from population parity.

Finally, w` is a user-specified weight assigned to each constraint — for example, if the

user wants to upweight the strength of the population parity constraint (ψpop(·)) over

the compactness constraint (ψcomp(·)), they would increase wpop and hold constant

or decrease wcomp. Therefore, MCMC algorithms can be scaled to accomodate an

arbitrary number of constraints, and if run for long enough, guarantee a representative

sample of plans from the target distribution.

Despite these theoretical guarantees, it is impossible to test whether an MCMC

algorithm has actually converged to the target distribution in practice. While re-

searchers can rely on graphical checks such as traceplots, autocorrelation plots, and

statistical tests such as the Gelman-Rubin diagnostic (Gelman and Rubin, 1992),

3Fifield et al. (2018) provides more detail on this in Section 2.2.

42

these tests and diagnostics are merely suggestive. Furthermore, MCMC methods

may traverse the entire space of redistricting plans very slowly — unlike RSG algo-

rithms, MCMC methods take the previously accepted plan as a starting point for

the next iteration of simulations, and make iterated small changes. Therefore, the

entire Markov chain may demonstrate severe autocorrelation, which is exacerbated

when constraints are applied since it will become easier to get stuck in local modes.

Although tools such as simulated tempering (Marinari and Parisi, 1992; Geyer and

Thompson, 1995) and parallel tempering (Geyer, 1992) can reduce autocorrelation

and allow the algorithm to transfer more easily between local modes, MCMC meth-

ods still struggle to scale to large redistricting problems.

MCMC algorithms have been subjected to a number of validation exercises, which

have provided mixed evidence that they are able to scale to global problems. As

mentioned previously, Fifield et al. (2018) constructed the FL25 data set in order

to validate the performance of their algorithm on a small-scale problem, where it

performed well under population constraints of various strength. The authors then

subjected the algorithm to two state-level problems — global simulations of the New

Hampshire map, where standard MCMC diagnostics suggested that the Markov chain

had converged, and a more limited set of “local” simulations exploring the space of

congressional district plans in Pennsylvania that look similar to the implemented

plans. When applying their method to a global search of Pennsylvania, the Markov

chain appeared not to have converged even after an extended run. In addition, Her-

schlag et al. (2018), who conducted a global search of North Carolina’s redistricting

plans, validate their MCMC algorithm by starting it from a number of different seed

plans for North Carolina. They show that the resulting distributions are fairly simi-

lar, which they provide as evidence that their algorithm accurately samples from the

target distribution.

43

3.2.3 Evolutionary Algorithm Methods

A new class of redistricting simulation methods based on evolutionary algorithms

(EA) (Liu, Tam Cho and Wang, 2016; Tam Cho and Liu, 2016) use massive compu-

tational resources to efficiently draw large numbers of redistricting plans that satisfy

a set of constraints. Evolutionary algorithms start with a definition of constraints

that the algorithm must respect — for the redistricting problem, these often include

population parity, contiguity, assignment of each unit to at most one district, and

avoiding splitting communities of interest (among others). Given the constraints, an

objective to maximize is then defined — this distinguishes EA methods from RSG

and MCMC algorithms, in that each iteration of the algorithm technically searches

for an optima on the defined metric subject to the predefined constraints. Finally,

the EA algorithm repeatedly searches for solutions by first splitting up a single state

graph G into a number of contiguous sub-maps that can be operated on in parallel.

EA optimizes within each of these sub-graphs while using message-passing interface

(MPI) operators to exchange solutions across maps and track solutions on the level of

the full map. The stochastic nature of the algorithm ensures that it will not converge

to a single solution — rather, running EA repeatedly on the same graph will return

a distribution of solutions to the redistricting problem for a given state.

Given the huge computational resources they can harness4, EA algorithms are

exciting as a potential alternative method of drawing huge ensembles of redistricting

plans subject to specified constraints. However, like RSG methods, EA methods

are heuristic algorithms with no theoretical guarantees and without a defined target

distribution of interest. Furthermore, to the best of our knowledge, no validation

exercises of EA algorithms along the lines of Fifield et al. (2018) or Magleby and

Mosesson (2018) exist. This lack of validation is further exacerbated by the huge

4Liu, Tam Cho and Wang (2016) run their algorithm on the BlueWaters supercomputer infras-
tructure and have scaled their algorithm up to run on 131,000 processors.

44

computational resources needed to run these algorithms — Liu, Tam Cho and Wang

(2016) have optimized their method for the BlueWaters supercomputing resource

at the University of Illinois at Urbana-Champaign, and furthermore no open-source

implementation of their PEAR EA algorithm exists for adaptation and testing.

In sum, a wide variety of solutions for simulating large numbers of redistricting

plans exist, but they differ in their theoretical guarantees, the set of validation ex-

ercises they have been subjected to, their scalability, and whether they have been

released as open-source software for broader study and external validation. In the

next section, I examine the primary validation data set for redistricting algorithms,

FL25, discuss its shortcomings as a general validation solution, and then propose a

new method for validating redistricting simulation algorithms.

3.3 Validation Exercises using FL25

Section 3.2.2 briefly discusses the FL25 data set and its use in validation exercises

for redistricting simulators. This data set, which was introduced in Fifield et al.

(2018), enumerates every valid partitioning of a 25-precinct subset of Florida’s vot-

ing precincts into three congressional districts (a total of 117,688 possible plans that

respect district contiguity). This data set has been used for validation exercises in a

number of other papers and studies — as mentioned previously, Magleby and Moses-

son (2018) compare simulated plans from their algorithm against the true distribution

of FL25, and Cho (2017), in an expert report filed in League of Women Voters v. Wolf

et al. (2017), uses FL25 to counter claims that RSG algorithms can sample uniformly

from the underlying distribution of redistricting plans. Figure 3.1 shows the FL25

subset of Florida, as well as the distribution of precinct populations within the subset.

While FL25 improves on the current state of validation methods for redistricting

simulation, it is still a single subset of electoral geography with its own idiosyncracies

that do not necessarily generalize to other maps. As Magleby and Mosesson (2018)

45

26

28

30

−88 −86 −84 −82 −80

Longitude

La
tit

ud
e

In FL25

Not in FL25

FL25 Subset of Florida

26.4

26.5

26.6

26.7

−81.8 −81.6 −81.4

Longitude

La
tit

ud
e

Population

1000

2000

3000

4000

FL25 Subset by Population

Figure 3.1: Maps of the FL25 subset. The left plot situates the FL25 subset in the
larger map of Florida, while the right-hand map shows the precincts in FL25 shaded
by precinct population.

note, FL25 is highly unbalanced — only 8 out of the 117,688 enumerated plans achieve

standard levels of population parity (≤ 1%). While it will be more difficult to obtain

a balanced graph when the geographic units are more coarsened, it nonetheless raises

the question of how representative FL25 is compared to other subsets of electoral

geography in Florida.

I examine the representativeness of FL25 in Figure 3.2. To do so, I took the same

baseline map of Florida precincts (6,688 precincts in total) and randomly sampled

300 separate sets of 25 adjacent precincts. For each set, I then enumerated every

partition of each set into three contiguous sub-partitions. To enumerate the partitions

quickly, I rely on the enumpart library described in Kawahara et al. (2017), who

introduce a novel algorithm using zero-suppressed decision diagrams that improves

the computational performance of enumeration algorithms for graphs. For each map,

I then count the number of plans whose level of population parity is within 1%

(distribution plotted on the left) and I estimate the standard deviation of precinct

46

0

50

100

150

200

0 500 1000 1500 2000

Number of Solutions

N
um

be
r

of
 M

ap
s

(FL25 is Dashed Red Line)

Solutions within 1% of Parity

0

20

40

60

2500 5000 7500

Standard Deviation

N
um

be
r

of
 M

ap
s

(FL25 is Dashed Red Line)

Standard Deviation of Precinct Populations

Figure 3.2: Plot of the distribution of the number of enumerated plans within 1%
of population parity (left plot) and of the standard deviation of precinct populations
in the 25-precinct test maps (right plot). Values for FL25 are plotted as dashed red
lines. Distributions are the result of fully enumerating all three-district partitions of
300 independent 25-precinct maps, each drawn from Florida.

population (distribution plotted on the right). In both plots, the value for the FL25

subset is plotted as a dashed red line.

Both plots show that FL25 is somewhat unrepresentative compared to a random

sample of similarly-sized subsets from the same Florida graph. More importantly,

there is substantial variation in the traits of the solution space depending on the

layout of the starting map. Focusing on population alone, I find that enumerated

plans vary substantially in their balance — the degree to which the districtings for

each enumerated map fall within standard levels of population parity (left plot). FL25

has on-average lower balance, such that 64% of maps have more enumerated plans

within 1% of population parity. More striking, however, is the degree of overdispersion

in the distribution — while the mean number of plans within population parity for

any given map is 69.2, the variance is 36,317. FL25 appears to be even more of an

outlier when looking at the standard deviation in precinct populations (right plot)

47

— out of the sampled maps, only 2.67% have a higher standard deviation of precinct

populations than FL25.

While the validation exercises using FL25 or any other fully enumerated maps

are an improvement over the status quo of no validation, validation on a single map

may still reflect idiosyncracies of that particular set of geographies. In the following

section, I show how to use improved enumeration algorithms to more rigorously test

redistricting simulation algorithms.

3.4 General Tests for Evaluating Redistricting

Simulation Methods

Here, I introduce a new method for validating ensembles of simulated redistricting

plans that avoids relying on a single enumerated map that may be an unrepresenta-

tive subset of the state at large. The new validation method generates many fully

enumerated maps and runs the simulation algorithm separately on each map, creating

different ensembles on a wider variety of geographies. Statistical tests can compare

the similarity of the simulated distribution to the enumerated, target distribution,

which allows analysts to assess how close the simulated ensembles come to recovering

the target distributions across a wide variety of geographies.

At its core, the new test repeats the validation exercise conducted in Figure 3 of

Fifield et al. (2018) many times. First, a small test map is created, and every partition

of that map into n contiguous sub-units is enumerated. Second, the redistricting

algorithm is run for a set number of iterations on the test map. Third, a summary

statistic of interest, such as the efficiency gap (Stephanopoulos and McGhee, 2015)

or partisan symmetry (King and Browning, 1987) is calculated for every plan in

the simulated ensemble and in the full enumerated set of plans. Finally, the two

distributions are compared using a measure of similarity between two distributions,

such as the Kolmogorov-Smirnov test, Kullback-Leibler distance, or Earth Mover’s

48

distance. Once this procedure has been run k times, the distribution of the chosen

similarity measure can be plotted as a means of assessing accuracy. I outline the

validation procedure in full in Appendix Section B.1.

The computational bottleneck in this procedure is in Step 1, where every partition

of a given sub-map into n connected components is enumerated. Existing enumeration

methods, such as the redist.enumerate() function in the R package redistwhich relies

on spanning tree representations of the underlying map, struggle to enumerate even

small test sets quickly, although they improve on näıve approaches that enumerate

every possible partition of the map and then check each one for contiguity. Here, I

rely on the enumpart library introduced by Kawahara et al. (2017) to conduct the

enumeration step quickly. enumpart combines efficient data structures called zero-

suppressed decision diagrams (ZDD) with frontier-based search methods to quickly

enumerate all partitions of a map into n contiguous components. enumpart also

incorporates constraints such as population parity through weights applied to each

node.

Figure 3.3 compares the runtime of the spanning tree enumeration algorithm im-

plemented in redist against enumpart. The x-axis gives the number of geographic

units being partitioned, while the y-axis gives the natural log of the runtime of the

algorithm in seconds. Each boxplot gives the distribution of runtime across 50 trials.

For both the two-district and three-district partitioning task, enumpart scales much

more efficiently than redist.enumerate(). Furthermore, while enumpart can complete

partitioning tasks of maps into more than three districts, redist.enumerate() struggles

to enumerate solutions to these problems quickly. In general, I am agnostic as to the

enumeration method used, other than recommending that the enumeration method

that allows for the most naturalistic test maps possible be used. As more efficient

enumeration methods are derived, allowing researchers to create test maps with more

geographic units, I recommend researchers use those for validation exercises.

49

2 Districts 3 Districts

10 12 14 16 18 20 10 12 14 16 18 20

−5

0

5

Number of Geographic Units in Map

ln
(R

un
tim

e)
 (

S
ec

on
ds

)

Spanning Tree

ZDD

Runtime Comparison of ZDD and Spanning Tree Enumeration

Figure 3.3: Runtime comparison of the spanning tree enumeration procedure, as
implemented in redist.enumerate() (Fifield, Tarr and Imai, 2015), and the ZDD enu-
meration procedure, as implemented in the enumpart library (Kawahara et al., 2017).
Each boxplot represents the method’s runtime across 50 trials. As the number of
geographic units of the underlying map increases, the spanning tree procedure scales
increasingly poorly relative to the ZDD method.

Next, I illustrate the proposed validation procedure. The underlying map for this

exercise is Pennsylvania’s 9,059 voting precincts, which are divided into 18 congres-

sional districts. I first sample 300 independent subsets of the map of 20 precincts

each. Using enumpart, I enumerate for each small map every partition of that map

into two contiguous congressional districts. I then run both the random-seed-and-

grow algorithm, as implemented in the redist.rsg() function in redist, and an MCMC

algorithm as implemented in redist.mcmc(). Next, I calculate the Republican dis-

similarity index (Massey and Denton, 1988) as a substantive quantity of interest for

each enumerated and simulated redistricting plan for each map.5 Last, I compare

5The dissimilarity index (Massey and Denton, 1988), which is a common measure of segregation,
is defined as

D =

n∑
i=1

ti|pi − P |
2TP (1− P)

where i indexes n areal units such as precincts, pi is the share of areal unit i that identifies as a
particular group, T is the total population across all areal units, and P is the share of a group across
all areal units. Substantively, it can be interpreted as the share of a particular group that would
have to be moved in order to be evenly distributed across all n areal units.

50

the distribution of the dissimilarity index in the set of simulated plans against the

distribution of the dissimilarity index in the fully enumerated set of plans using the

Kolmogorov-Smirnov (KS) test, which is a nonparametric test of the null hypothesis

that two samples are drawn from the same distribution.

For the MCMC algorithms run using simulated tempering, I tune the algorithms

using the following procedure. First, I enumerate a set of weights for wpop as described

in Section 3.2.2 that upweight draws closer to population parity, as well as a range

of transition weights that favor draws which constrain more aggressively. I then run

each parameter combination for 50,000 iterations. Finally, among the set of parameter

combinations where the Metropolis-Hastings acceptance probability is between 20%

and 40%, I select the parameter combination where the temperatures appear to be

the closest to uniformly distributed. This is similar to tuning procedures in full-state

substantive applications, where researchers have to look at proxy measures such as

the Metropolis-Hastings acceptance probability, trace plots, and Gelman-Rubin Rhat

measures to assess a well-performing markov chain. Note that none of the decisions

involve selecting a parameter combination based on some measure of distributional

similarity when compared to the true distribution, which is not possible in applications

on the scale of a full state.

Figure 3.4 plots the results of this test. Each panel is a QQ-plot that compares

the distribution of p-values from each KS test against the uniform distribution under

different levels of required population parity (from left to right: no constraint, 20%,

10%). Under the null hypothesis that each simulated ensemble is a random sample

from the target distribution, the p-value from the KS test should be uniformly dis-

tributed between 0 and 1, which in the QQ-plot looks as though the points fall close to

the 45-degree line. Across all three levels of population parity, the MCMC algorithms

outperform the RSG algorithms by a wide margin. For the RSG algorithms, the KS

p-values are tightly clustered at 0, which is a rejection of the null hypothesis that

51

None 20% 10%

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Theoretical Quantile

E
m

pi
ric

al
 Q

ua
nt

ile

MCMC − Rejection MCMC − Simulated Tempering RSG

QQ−Plots of KS P−Value on Small PA Maps

Figure 3.4: Results from the proposed validation procedure at three different popu-
lation parity levels. The left-most panel plots the results of the validation when no
population parity level is applied, the center panel plots the results when a popula-
tion parity measure of 20% is applied, and the right panel applies a population parity
threshold of 10%. In all cases, the distribution of the KS p-value is much closer to
the uniform distribution for MCMC algorithms than for the RSG algorithm.

the simulated distribution is drawn randomly from the target distribution. For both

MCMC algorithms, the KS p-values are not as clustered at 0 or 1, but they are are

also not distributed fully uniformly, indicating some degree of bias in the simulated

set of plans. However, they show substantial improvements over RSG algorithms at

every level of population parity.

One downside of using KS tests for the validation metric is their sensitivity —

even small deviations from the target distribution in the sample that would even out

with more samples can lead to a rejection of the null hypothesis. This is because the

KS test, which is defined as

Dn = sup
x
|Fn(x)− F (x)|,

searches for the point of the greatest difference between the cumulative distribution

function of the sample (Fn(x)) and the target cumulative distribution function (F (x))

and tests for a significant difference at that point. Researchers can use different

52

None 20% 10%

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0

100

200

300

Kullback−Leibler Divergence

C
ou

nt

MCMC − Rejection MCMC − Simulated Tempering RSG

Distribution of Kullback−Leibler Divergence on Small PA Maps

Figure 3.5: Results from the proposed validation procedure at three different pop-
ulation parity levels, using the Kullback-Leibler divergence measure. The left-most
panel plots the results of the validation when no population parity level is applied,
the center panel plots the results when a population parity measure of 20% is applied,
and the right panel applies a population parity threshold of 10%. In all cases, the
distribution of the Kullback-Leibler divergence is much closer to 0 for the MCMC
algorithms than for the RSG algorithms.

measures of distribution similarity in order to avoid this sensitivity. One possible

measure is the Kullback-Leibler divergence, which is defined as

DKL(S‖T) =

∫ ∞
−∞

s(x)log
s(x)

t(x)
dx

where S indicates the distribution of the sample and s(x) the density of S, while

T indicates the distribution of the target and t(x) its density. When S and T are

the same, DKL(S‖T) is equal to 0, and greater values indicates a larger difference

between two distributions.

In Figure 3.5, I conduct the procedure proposed above, but instead of conducting a

KS test comparing the Republican dissimilarity indices from the ensemble against the

target distribution, I compare them using Kullback-Leibler divergences. Again, under

all levels of population parity, the MCMC algorithms outperform the RSG algorithm,

which is indicated by the tight clustering of the Kullback-Leibler divergences for

53

the MCMC algorithms around 0. In contrast, the RSG algorithm exhibits greater

divergence from the target distribution under repeated trials, as indicated by the

wider range of the distribution of the divergences. Other measures of distributional

similarity, such as Earth Mover’s distance, can be used to test the robustness of any

results found using a single measure of similarity. I also recommend using multiple

continuous summary measures to assess robustness — for instance, partisan symmetry

(King and Browning, 1987), the efficiency gap (Stephanopoulos and McGhee, 2015),

or electoral competitiveness (Tam Cho and Liu, 2016) can all be quickly calculated

and tested in the same way once the ensembles have been run.

3.5 Conclusion

I introduce a simple validation test for simulated redistricting ensembles to assess

whether a sample of redistricting plans is an accurate representation of the true

distribution of redistricting plans on different sets of geographies. The method relies

on recent advances in enumeration methods to quickly find all contiguous partitions

of a given map into n connected components, overcoming previous computational

bottlenecks that limited researchers to small test maps. In addition, I caution against

validation exercises that rely on enumeration results from a single map by showing

how an open-source validation data set, FL25, deviates relative to a random subset

of equally-sized maps drawn from the same map of Florida. While none of these tests

can provide positive evidence that a given simulation method can uniformly sample

redistricting plans for a full state, researchers should be skeptical that simulation

methods which fail these small-map tests can scale to full-state redistricting problems.

I note that in general, larger validation data sets will always be better for the pur-

pose of naturalistic comparison and validation of simulated redistricting plan ensem-

bles. That is, as enumeration algorithms improve and allow researchers to enumerate

every partition of increasingly larger sets of geographic units into more connected

54

components, I urge researchers to use those new methods for the validation step of

this test. Stated somewhat differently, the smaller the validation test sets that can be

used for validation, the less weight we should place on evidence derived from ensem-

bles of simulated plans. Furthermore, as these methods continue to scale to larger

redistricting problems, they can also be used to test more substantive questions about

redistricting. For example, while the Stirling number representation of the number

of possible partitions of a map into n congressional districts suggests an intractable

number of solutions for enumeration, common legal and political constraints such as

population parity, compactness, preservation of communities of interest, and status

quo bias will reduce the solution space by many orders of magnitude. Improved enu-

meration methods can help us understand how much that solution space decreases

with additional statutory and political constraints, while also helping to map out the

multimodality of the true solution space.

Lastly, I urge researchers, practitioners, and activists to continue pushing for

open and transparent evaluations of redistricting simulation methods. As the 2020

Census passes, lawsuits challenging proposed redistricting plans will inevitably be

brought to court, and simulation evidence will be used to challenge and defend those

plans. It is necessary that the simulation methods used to create that evidence be

rigorously evaluated, and this paper introduces what will hopefully be one of many

complementary validation tests used to ensure that this evidence is of the highest

possible quality.

55

Chapter 4

fastLink: R Package for Fast

Probabilistic Record Linkage
1

4.1 Introduction

Modern social science research often relies on innovative combinations of survey, ad-

ministrative, and textual data sources in order to advance new claims and knowledge

about the world. Merging can be a trivial task if there exists a unique identifier

that unambiguously identifies records, in which case the merge() function in R can

seamlessly and quickly conduct a 1-to-1, 1-to-many, or many-to-1 merge on the unique

identifier. Unfortunately, in practice, this unique identifier is rarely available. Applied

researchers have previously relied on deterministic algorithms, which suffer from an in-

ability to flexibly handle missing data and measurement error, or proprietary merging

algorithms, which prevent the merging process from being incorporated transparently

into the replication process. Furthermore, none of the deterministic or proprietary

algorithms allow the researcher to quantify the uncertainty inherent in the merging

process.

1Portions of this chapter are adapted from joint work with Ted Enamorado and Kosuke Imai in
Enamorado, Fifield and Imai (2017).

56

In this paper, we introduce a new R package, fastLink (Enamorado, Fifield and

Imai, 2017) for conducting data merges. The fastLink package includes: (1) a fast im-

plementation of the canonical Fellegi-Sunter (Fellegi and Sunter, 1969) probabilistic

record linkage (PRL) model (2) a series of utilities for flexibly clustering, preparing,

adjusting, and summarizing data merges (3) extensions that relax the core assump-

tions of the Fellegi-Sunter model, and methods to incorporate auxiliary information

about migration to inform merges of data sets across time and space and (4) easy par-

allelization and automatic hashing of merging information in order to quickly merge

data sets in a memory-efficient manner. We focus here on the demonstration of the

functionalities included in the fastLink package. The statistical theory underlying the

procedures we demonstrate here can be found in Enamorado, Fifield and Imai (2017).

The fastLink package is freely available for download through the Comprehensive

R Archive Network (CRAN) at https://cran.r-project.org/package=fastLink

and can be installed using the standard syntax for installing an R package:

install.packages("fastLink")

where users may be prompted to select a CRAN mirror from which the package

will be downloaded. This step needs to be done only once (unless one wishes to

update fastLink to a new version).

In the next section, we provide an overview of the fastLink package, including the

computational implementation and a summary of our improvements on the Fellegi-

Sunter model to incorporate aggregate migration information. We then describe how

to conduct a basic data merge (Section 4.3) using fastLink along with methods for

analyzing the results of the merge, methods for incorporating auxiliary information

to inform the merge and post-processing of merged datasets (Section 4.4), and func-

tionalities included for pre-processing and clustering data in preparation for a merge

(Section 4.5). In Section 4.6, we apply fastLink to estimate rates of party switching

57

https://cran.r-project.org/package=fastLink

among local politicians in Rio de Janeiro, Brazil between 2012 and 2016 to illustrate

a principled record linkage workflow. Finally, Section 4.7 concludes.

4.2 Overview of the fastLink Algorithm

4.2.1 The Model and Assumptions

Before describing the functions available in fastLink, we briefly describe the statistical

model and assumptions implemented in our software. Following the canonical model

of record linkage proposed by Fellegi and Sunter (1969), we model the probability of

two records, (record i in dataset A and record j in dataset B) matching using the

following finite mixture model,

γk(i, j) |Mij = m
indep.∼ Discrete(πkm) (4.1)

Mij
i.i.d.∼ Bernoulli(λ) (4.2)

where the latent mixing variable Mij denotes whether i and j are a match. For

variable k, the vector πkm denotes the probability of each agreement level for that

variable, conditional on Mij, and λ is the probability of a match across all pairwise

comparisons.

The model relies on two independence assumptions, which are reviewed in more

detail in Enamorado, Fifield and Imai (2017). First, we assume that the latent mixing

variable Mij is independently and identically distributed. Second, we assume condi-

tional independence across the k linkage variables conditional on match/non-match

status.

In addition to the two independence assumptions, we follow Sadinle (2014) and

assume the data are Missing At Random (MAR) conditional on Mij. This avoids ad

hoc procedures to handling missing values in the data, such as recoding all missing

58

data as disagreements. The MAR assumption also allows us to simply ignore missing

data, leading to a tractable form for the likelihood function.

4.2.2 The EM Algorithm

Following Winkler (1988), we apply the expectation and maximization (EM) algo-

rithm, which is an iterative procedure, to estimate the model parameters (Dempster,

Laird and Rubin, 1977). Under the modeling assumptions described in Section 4.2.1,

the complete-data likelihood function is given by,

Lcom(λ,π | γ, δ) ∝
NA∏
i=1

NB∏
j=1

1∏
m=0

λm(1− λ)1−m
K∏
k=1

(
Lk−1∏
`=0

π
1{γk(i,j)=`}
km`

)1−δk(i,j)


1{Mij=m}

where NA and NB indicate the number of records in dataset A and B, respectively,

δk(i, j) indicates whether observation i or j is missing information on variable k, and

where Mij is unobserved.

Given this complete-data likelihood function, the E-step is given by

ξij = Pr(Mij = 1 | δ(i, j),γ(i, j))

=
λ
∏K

k=1

(∏Lk−1
`=0 π

1{γk(i,j)=`}
k1`

)1−δk(i,j)

∑1
m=0 λ

m(1− λ)1−m
∏K

k=1

(∏Lk−1
`=0 π

1{γk(i,j)=`}
km`

)1−δk(i,j)
(4.3)

where the posterior probability of being a true match is computed for each pair given

the current values of model parameters. Using this posterior match probability, the

M-step can be implemented as follows,

λ =
1

NANB

NA∑
i=1

NB∑
j=1

ξij (4.4)

πkm` =

∑NA
i=1

∑NB
j=1 1{γk(i, j) = l)}(1− δk(i, j))ξmij (1− ξij)1−m∑NA

i=1

∑NB
j=1(1− δk(i, j))ξmij (1− ξij)1−m

(4.5)

59

Then with a suitable set of starting values, we repeat the E-step and M-step until

convergence. When setting the starting values for the model parameters, we impose

inequality constraints based on the following two ideas: (1) the set of matches is

strictly smaller than the set on non-matches λ� 1−λ, and (2) for binary comparisons,

we have πk10 � πk11 and πk01 � πk00 for each k (Jaro, 1989; Winkler, 1993; Sadinle

and Fienberg, 2013). The latter implies that agreement (disagreement) is more likely

among matches (non-matches).

4.2.3 Hashing for Efficient Memory Management

While the EM algorithm described above is relatively simple, we find that existing

implementations are computationally inefficient (see Enamorado, Fifield and Imai

(2017) for more details). To overcome this challenge, we develop a computationally

efficient implementation of the EM algorithm. First, for implementing the E-step, no-

tice that the posterior match probability given in equation (4.3) takes the same value

for two pairs if their agreement patterns are identical. For the sake of illustration,

consider a simple example where two variables are used for merging, i.e., K = 2, and

binary comparison is made for each variable, i.e., Lk = 2. Under this setting, there are

a total of nine agreement patterns: (0, 0), (0, 1), (1, 0), (1, 1), (NA, 0), (NA, 1), (0, NA),

(1, NA), and (NA, NA) where 1 and 0 represent agreement and disagreement, respec-

tively while NA represents a missing value. Then, for instance, the posterior match

probability for (0, 1) is given by λπ110π211/{λπ110π211 + (1−λ)π100π201} whereas that

for (1, NA) is equal to λπ111/{λπ111 +(1−λ)π101}. If all comparison values are missing,

e.g., (NA, NA), then we set the posterior match probability to λ. Thus, the E-step can

be implemented by computing the posterior match probability for each of the realized

agreement patterns. Often, the total number of realized agreement patterns is much

smaller than the number of all possible agreement patterns.

60

Second, the M-step defined in equations (4.4) and (4.5) requires the summation of

posterior match probabilities across all pairs or their subset. Since this probability is

identical within each agreement pattern, all we have to do is to count the total number

of pairs that have each agreement pattern. We use the following hash function for

efficient counting,

H =
K∑
k=1

Hk where Hk =


h

(1,1)
k h

(1,2)
k . . . h

(1,NB)
k

...
...

. . .
...

h
(NA,1)
k h

(NA,2)
k . . . h

(NA,NB)
k

 (4.6)

where h
(i,j)
k = 1 {γk(i, j) > 0} 2γk(i,j)+1{k>1}×

∑k−1
e=1 (Le−1). The matrix Hk maps each

pair of records to a corresponding agreement pattern in the kth variable that is

represented by a unique hash value based on the powers of 2. These hash values

are chosen such that the matrix H links each pair to the corresponding agreement

pattern across K variables.

Since an overwhelming majority of pairs are not true matches, most elements of

the Hk matrix are zero. As a result, the H matrix also has many zeros. In our

implementation, we utilize sparse matrices whose lookup time is O(T) where T is the

number of unique agreement patterns observed. In most applications, T is much less

than the total number of possible agreement patterns, i.e.,
∏K

k=1 Lk. This hashing

technique is applicable if the number of variables used for merge is moderate. If many

variables are used for the merge, approximate hashing techniques such as min hashing

and locally sensitive hashing are necessary.

4.2.4 Reverse Data Structures for Field Comparisons

The critical step in record linkage is to compare pairs of records across the K fields

used to link two datasets, which is often regarded as the most expensive step in

terms of computational time (Christen, 2012). To do so, for each linkage field k,

61

we first compare observation i of dataset A and j from dataset B via a pre-defined

distance metric (e.g., Jaro-Winkler for string-valued fields) and obtain a value which

we call Sk(i, j). However, comparisons in the Fellegi-Sunter model are represented

in terms of a discrete agreement levels per linkage field, not a continuous measure

of agreement as the one implied by the distance metric. In other words, we need a

discrete representation of Sk(i, j). Specifically, if we have a total of Lk agreement

levels for the kth variable, then,

γk(i, j) =



0 if Sk(i, j) ≤ τ0

1 if τ0 < Sk(i, j) ≤ τ1

...

Lk − 1 if τLk−2 < Sk(i, j) ≤ τLk−1

(4.7)

where γk(i, j) represents the agreement level between the values for variable k for the

pair (i, j) and τ = {τ0, τ1, . . . , τLk−1
} the set of predetermined thresholds use to define

the agreement levels. For example, to compare names and last names, some authors

such as Winkler (1990) argue in favor of using the Jaro-Winkler string distance to

produce Sk, where one could use τ = {0.88, 0.94} to construct γk for three agreement

levels.

Still the problem with constructing γk is that the number of comparisons we have

to make is often large. In our proposed implementation we exploit the following

characteristics of typical record linkage problems in social sciences:

• The number of unique values observed in each linkage field is often less than the

number of observations in each dataset. For example, consider a variable such

as first name. Naively, one may compare the first name of each observation in

dataset A with that of every observation in B. In practice, however, we can

reduce the number of comparisons by considering only unique first name that

62

appears in each data set. The same trick can be used for all linkage fields by

focusing on the comparison of the unique values of each variable.

• For each comparison between two unique first names (name1,A and name1,B), for

example, we only keep the indices of the original datasets and store them using

what is often referred as a reverse data structure in the literature (Christen,

2012). In such an arrangement, a pair of names (name1,A, name1,B) becomes a

key with two lists, one containing the indices from dataset A that have a first

name equal to name1,A, and another list that does the same for name1,B in

dataset B.

• Comparisons involving a missing value need not be made. Instead, we only

need to store the indices of the observations in A and B that contain missing

information for field k.

• Since the agreement levels are mutually exclusive, we use the lowest agreement

level as the base category. Once a set of threshold values has been defined,

then a pair of names can only be categorized in one of the Lk agreement levels.

The indices for the the pairs of values that can be categorized as disagreements

(or nearly disagreements) do not need to be stored. For most variables, dis-

agreement is the category that encompasses the largest number of pairs. Thus,

our reverse data structure lists become quite sparse. This sparsity can be ex-

ploited by the use of sparse matrix, yielding a substantially memory efficient

implementation.

Together, these improvements make fastLink more efficient in runtime and memory

management than other existing open-source implementations of the Fellegi-Sunter

record linkage model and allow it to scale to larger problems.

63

4.2.5 Parallelization and Random Sampling

Under the proposed probabilistic modeling approach, a vast majority of the compu-

tational burden is due to the enumeration of agreement patterns. In fact, the actual

computation time of implementing the E and M steps, once hashing is done, is fast

even for large data sets. Therefore, for further computational efficiency, we parallelize

the enumeration of agreement patterns. Specifically, we take a divide-and-conquer

approach by partitioning the two data sets, A and B, into equally-sized subsets such

that A = {A1,A2, . . . ,AMA} and B = {B1,B2, . . . ,BMB}. Then, using OpenMP, we

count the agreement patterns for each partition pair {Ai,Bj} in parallel using the

hash function given in equation (4.6). As explained above, we utilize sparse matrix

objects to efficiently store agreement patterns for all pairwise comparisons. Finally,

the entire pattern-counting procedure is implemented in C++ for additional perfor-

mance gains. Taken together, our approach provides simple parallelization of the

pattern-counting procedure and efficient memory usage so that our linkage procedure

can be applied to arbitrarily large problems.

Another advantage of the probabilistic modeling approach is the use of random

sampling. Since the number of parameters, i.e., λ and π, is relatively small, we can

efficiently estimate these parameters using a small random subset. Once we obtain

the parameter estimates, then we can compute the posterior match probabilities for

every agreement pattern found in the entire data sets in parallel. In this way, we are

able to scale the model to massive data sets.

4.3 Conducting Data Merges using fastLink

The fastLink package consists of several main functions as well as various methods for

summarizing output from these functions (e.g., plot() and confusion()). Figure 4.1

illustrates the core structure of the fastLink package.

64

Preprocessing

Estimate Movers Priors:
calcMoversPriors()

Text Preprocessing:
preprocText()

Block Data:
blockData()

String Subsetting:
stringSubset()

Matching

Count Matches by Variable:
gammaCKpar(), gammaKpar(), gammaNUMpar()

Count Unique Matching Patterns:
tableCounts()

Run EM Algorithm:
emlinkMARmov()

emlinklog()

Impute from EM:
emlinkRS()

Get Indices of Matches:
matchesLink()

Post-Processing

Dedupe Matches:
dedupeMatches()

Reweight by First Name:
nameReweight()

Probability of Match:
getPosterior()

Summarize Results

Calculate Confusion Table:
confusion()

Plot Matching Patterns:
plot()

Clean EM for Inspection:
inspectEM()

Runs Full Algorithm:
fastLink()

Get Dataframe of Matches:
getMatches()

Figure 4.1: Core structure of the fastLink package as of version 0.4.1.

65

The core of the algorithm can be run using the fastLink() wrapper, which we will

describe in more detail below. This includes utilities to count unique patterns, run

the EM algorithm, and adjust the estimated matching probabilities by deduping and

through auxiliary information such as name frequency. Each of these steps can also

be run separately through the functions listed in the utilities. fastLink also includes

utilities to prepare data for a merge by harmonizing fields and data blocking, as well

as utilities for summarizing and inspecting data merges.

4.3.1 A Small-Scale Example

The fastLink() function takes two data sets and a simple description of the merging

fields, and returns the results of the data merge which can then be passed to the

plot() and confusion() functions for inspection and summarization. We illustrate

the use of the function using a small-scale example, which is included in the fastLink

package. The two data sets, dfA and dfB, are samples from the California voter

file which are then shuffled within-field to preserve anonyminity. There are 50 true

matches across the two data sets, and a brief description of the fields in the two data

sets can be found by running

?dfA

?dfB

Here, we run a simple match using fastLink() to merge dfA and dfB:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear")

)

The first two arguments in fastLink() are where the user specifies the two data

sets to link. The only other required argument is ‘varnames‘, where the user specifies

the variables shared between the two data sets that should be used to match on.

66

Without any other arguments, fastLink() will compare each specified variable using

a simple match/non-match criterion, where any pair on a variable that does not

exactly match will be declared a non-match. The output object fl out contains the

following objects:

names(fl_out)

• matches: A matrix with two columns and a row for each matched pair above

the specified threshold. The first column, inds.a, gives the row numbers of

the successfully matched observations in datset A, while the second column

inds.b gives the row numbers of successfully matched observations in dataset

B. The user can recover subsetted data frames by specifying return.df = TRUE

in fastLink(), or by using the function getMatches().

• EM: Parameter estimates from the Expectation-Maximization algorithm, which

are used to calculate the confusion table and visualize the quality of different

matching patterns.

• patterns: The matching patterns for each match variable, sorted to correspond

to the pairs in matches. Here, 2 indicates an exact match, 0 indicates a non-

match, 1 indicates a partial match, and NA indicates a case where one or both

of the observations had a missing value.

• posterior: The posterior matching probability for each matched pair, sorted

to correspond to the pairs in matches.

• nobs.a, nobs.b: The number of observations in dataset A and dataset B,

respectively.

As mentioned above, the user can recover a data frame of the successfully matched

observations using the getMatches() function. The resulting data frame contains the

67

union of all unique column names between the two merged data frames, as well as

the match patterns and the posterior matching probability, as shown below:

matched_dfs <- getMatches(dfA = dfA, dfB = dfB,

fl.out = fl_out, threshold.match = 0.85)

The first two arguments to getMatches() are the data frames that we matched

in the call to fastLink() above, while the third argument (fl.out) is the result-

ing fastLink object containing the EM results, the matched indices, the posterior

matching probabilities for each pair of observations, and the full set of match pat-

terns for all pairs. Finally, we specify the threshold above which we declare a pair a

match using the threshold.match argument — this is the ξij parameter introduced

in Equation 4.3, which is the posterior probability of being in the matched set con-

ditional on the observed data. Here, if the estimated value of ξij is above 0.85 for a

given pair, we declare the pair a true match and return it as part of the final matched

data frame.

We can also summarize the merge using the confusion() function.

confusion(fl_out, threshold = 0.85)

$confusion.table

'True' Matches 'True' Non-Matches

Declared Matches 50.0 0.0

Declared Non-Matches 0.3 299.7

##

$addition.info

results

Max Number of Obs to be Matched 350.00

Sensitivity (%) 99.40

Specificity (%) 100.00

Positive Predicted Value (%) 100.00

Negative Predicted Value (%) 99.90

False Positive Rate (%) 0.00

False Negative Rate (%) 0.60

Correctly Classified (%) 99.91

F1 Score (%) 99.70

68

confusion() outputs a series of summary statistics about the quality of the data

merge, using the parameters estimated by the EM algorithm. The confusion table

estimates the number of true matches, true non-matches, and mis-classified matches

and non-matches using the posterior matching probability ξij. For example, to esti-

mate the false positive rate and false negative rate using a posterior match threshold

of 0.85, the function calculates

False Positive Rate: Pr(Mij = 0 | ξij ≥ 0.85) =

∑NA
i=1

∑NB
j=1 1{ξij ≥ 0.85}(1− ξij)∑NA

i=1

∑NB
j=1 1{ξij ≥ 0.85}

False Negative Rate: Pr(Mij = 1 | ξij < 0.85) =

∑NA
i=1

∑NB
j=1 ξij1{ξij < 0.85}
λNANB

The function returns a number of other summary metrics about the quality of the

match, including sensitivity, specificity, the F1 score, and the percent of observations

correctly classified as matches and non-matches.

Finally, we can visualize the matching patterns using the plot() function, as

follows:

plot(fl_out, posterior.range = c(0.85, 1))

The function simply takes the output of fastLink() and visualizes the matching

patterns within the specified posterior matching probability range. The top row

shows the matching patterns for the observations with the highest posterior matching

probability, and that those observations are exact matches on all six variables we

have included in the match. The second row shows the pattern with the second-

highest posterior match probability — pairs with this matching pattern exact-match

on all variables except for birthyear, where one or both observations are missing

information there. The visualization also shows partial matches for string-distance

and numeric-distance match patterns, which we will cover in more detail in the next

section, as well as variables where patterns do not match.

69

Matching Patterns Ordered by Posterior Probability of Match
P

os
te

rio
r

P
ro

ba
bi

lit
y

of
 a

 M
at

ch

fir
stn

am
e

las
tn

am
e

ho
us

en
um

str
ee

tn
am

e
cit

y

bir
thy

ea
r

0.
85

1
Match
Partial Match
Non−Match
NA

Figure 4.2: Plot of matching patterns using posterior match probabilities from
fastLink. The x-axis indicates different covariates used for the match, each row on the
y-axis is a different matching pattern ordered by posterior match probability, and the
colors indicate different matching categories.

4.3.2 Alternative Methods of Constructing Matching Pat-

terns

In the example above, we matched two data sets on six variables using exact matching

on each variable. However, misspellings and administrative errors may cause exact

matching to declare a variable pair a non-match even when it comes from the same

70

observation, and researchers may want to take that uncertainty into account when

merging data sets. In fastLink(), we allow researchers to capture the fuzziness of the

data match using both string-distance matching, which creates a numerical summary

of the closeness of two string variables such as age, and numeric matching, which

takes differences between numeric variables as a measure of closeness.

fastLink() lets users specify one of three separate string-distance measures — the

Jaro distance metric (Jaro, 1989), the Levenshtein edit distance (Levenshtein, 1965),

and the Jaro-Winkler distance metric (Winkler, 1990). While we refer interested

readers to the extensive literatures on these measures for exact definitions and more

information, their use in record linkage is fairly consistent. First, some string distance

measure M(si, sj) is calculated on two strings si and sj. The measure is converted

to a similarity measure such that values closer to 1 are maximally similar, and values

closer to 0 are maximally dissimilar. Lastly, a cutoff is chosen such that values of

the similarity measure above the cutoff are coded as matches, while values of the

similarity measure below the cutoff are coded as non-matches.

We can tell fastLink() to use string distance measures for specific variables using

the stringdist.match argument as follows:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

stringdist.match = c("firstname", "lastname", "streetname"),

stringdist.method = "jw", cut.a = 0.94

)

The argument stringdist.match contains a vector of variables that should be

matched using a string-distance metric, which is specified in stringdist.method.

Here, we’ve specified that fastLink() should use the Jaro-Winkler metric (jw), al-

though other valid metrics include the Jaro metric (jaro) or the Levenshtein distance

(lv). Finally, cut.a specifies that if the string similarity measure between pairs of

71

observations is above 0.94, the pair should be coded as a match. Default settings are

stringdist.method = "jw" and cut.a = 0.94 (following the recommendations of

Winkler (1990)).

Specifying the variables to be compared using numeric matching is similar. If,

for example, we believe that there may be administrative errors in year of birth or

address number, we may want to construct a measure of similarity by simply taking

the absolute value of the difference between the observations for each pair. The closer

the difference is to 0, the more likely they are to be a match on that variable. We can

make that comparison using the numeric.match argument in fastLink(), as follows:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

stringdist.match = c("firstname", "lastname", "streetname"),

stringdist.method = "jw", cut.a = 0.94,

numeric.match = c("birthyear"), cut.a.num = 1

)

Of the six variables we specified to match on, three (firstname, lastname, and

streetname) are now being compared using Jaro-Winkler string distances as de-

scribed above, and one (birthyear) is being compared with numeric distances. The

final two variables, city and housenum, use exact comparisons (the default). We have

also specified the threshold below which a numeric comparison is declared a match

using cut.a.num — here, if the birth year of observation i and observation j are less

than ±1 year apart or less, it is declared a match.

4.3.3 Incorporating Partial Match Categories

So far, we have introduced string distance and numeric distance comparisons in terms

of a single cutoff — if the comparison value is above the cutoff, it is declared a match,

while if it is below the cutoff, it is declared a non-match. For both comparison types,

72

though, we can introduce partial matching categories that can take advantage of more

information in the data. Here, a comparison is declared a match if it is above the

threshold provided in cut.a for a string distance comparison and cut.a.num for a

numeric distance comparison, and it will be considered a partial match if its value

is above the threshold given in cut.p (cut.p.num) and below the threshold given in

cut.a (cut.a.num) for string.distance comparisons (numeric distance comparisons).

If the value of the comparison is below cut.p for string distance comparisons or

cut.p.num for numeric comparisons, it is declared a non-match. We can specify

partial match comparisons as follows, using the argument partial.match:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

partial.match = c("streetname", "birthyear"),

stringdist.match = c("firstname", "lastname", "streetname"),

stringdist.method = "jw", cut.a = 0.94, cut.p = 0.88,

numeric.match = c("birthyear"), cut.a.num = 1, cut.p.num = 2.5

)

As before, we are matching the variables firstname, lastname, and streetname

using string-distance matching, birthyear using numeric distance matching, and

housenum and city using exact matching. However, we’ve also specified that the

comparisons for streetname and birthyear include a partial match category, and

we’ve also noted the lower cutoffs for declaring a comparison a partial match using

the arguments cut.p and cut.p.num. For all other variables without a partial match

category, the cutoff for match/non-match is still cut.a and cut.a.num.

4.3.4 Random Sampling to Speed up Large-scale Data

Merges

One advantage of the probabilistic modeling framework is that we can use random

sampling of observations to reduce the computational burden of estimating the model.

73

Calculating agreement patterns across two data sets of several million observations

each can be computationally difficult even for fastLink, and since the number of pa-

rameters being estimated by the model is fairly small (just π and λ), we can easily

estimate them on a small random subset of the data. Then, the user can split up the

larger data linkage task into smaller chunks and apply the parameter estimates from

the random sample to the full set of agreement patterns in parallel.

We demonstrate a simple example of this workflow below. We start by creating

two small random samples of our test data, dfA.s and dfB.s, by randomly sampling

30% of of the observations in each. Since we’re only estimating the model on this

subset and not actually getting matched pairs, we can tell fastLink() to only return

the EM object by specifying estimate.only = TRUE. This not only reduces the com-

putational time for estimating and returning the fastLink object, but it also returns

the EM object in a form that can be fed back into fastLink() when getting posterior

match probabilities for the full sample (fl out rs).

Take 30% random samples of dfA and dfB

dfA.s <- dfA[sample(1:nrow(dfA), nrow(dfA) * .3),]

dfB.s <- dfB[sample(1:nrow(dfB), nrow(dfB) * .3),]

Run the algorithm on the random samples

fl_out_rs <- fastLink(

dfA = dfA.s, dfB = dfB.s,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

estimate.only = TRUE

)

Estimate parameters for whole dataset

fl_out_predict <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

em.obj = fl_out_rs

)

74

Finally, we take the estimated model parameters and feed them back into

fastLink() to predict posterior match probabilities on the full data set. The EM

object is simply fed back into fastLink() using the em.obj argument, which tells

the function to take the estimated match parameters and apply them to the match

patterns in the full data set. The user can also split up the full data set and provide

the same estimated model parameters to each separate run of fastLink() to further

reduce the computational burden.

4.3.5 Capturing Dependence between Linkage Fields

A shortcoming of the Fellegi-Sunter model, as described in Section 4.2.1, is the as-

sumption of conditional independence across fields — conditional on the match status

Mij, the observed match pattern of variable k is assumed to be independent of the

observed match pattern for variable k′2 For example, conditional on being a true

match, the likelihood of being a match on first name should be fully independent of

the likelihood of being a match on last name. This is often an infeasible assumption,

particularly when dealing with large households. One proposed solution to this lim-

itation of the standard Fellegi-Sunter model (see Winkler, 1989, 1993; Thibaudeau,

1993; Larsen and Rubin, 2001, for full details) is to use weighted log-linear models to

capture the full set of dependencies across linkage fields, conditional on match status.

We implement the log-linear model in fastLink through the option cond.indep —

when set to true (default), fastLink() runs the standard Fellegi-Sunter conditionally

independent model. When set to false, it substitutes the log-linear modeling strategy

in the EM algorithm to model dependencies between linkage fields.

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

cond.indep = FALSE

2This can be formally stated as γk(i, j)⊥⊥γk′(i, j) |Mi,j .

75

)

As of version 0.4.1 of fastLink, the log-linear modeling strategy cannot accomodate

priors as described in Section 4.4.1. We save these extensions for future work.

4.3.6 Finding Duplicates in a Single Data Set

fastLink can also be used to de-duplicate a single data frame using the PRL frame-

work. Within-data-frame dedupliation is straightforward in fastLink— the user simply

provides the same data frame to both dfA and dfB arguments, and runs fastLink()

as they normally would. The blockData() function then takes both data frames and

the resulting output from fastLink(), and returns a final data frame with a new ID

column indicating identical observations.

Below is a simple workflow to de-duplicate dfA, after adding 10 duplicated obser-

vations manually:

Add duplicates

dfA <- rbind(dfA, dfA[sample(1:nrow(dfA), 10, replace = FALSE),])

Run fastLink

fl_out_dedupe <- fastLink(

dfA = dfA, dfB = dfA,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear")

)

##

====================

fastLink(): Fast Probabilistic Record Linkage

====================

##

dfA and dfB are identical, assuming deduplication of a single data set.

Setting return.all to FALSE.

##

Calculating matches for each variable.

Getting counts for parameter estimation.

Parallelizing calculation using OpenMP. 1 threads out of 8 are used.

Running the EM algorithm.

76

Getting the indices of estimated matches.

Parallelizing calculation using OpenMP. 1 threads out of 8 are used.

Calculating the posterior for each pair of matched observations.

Getting the match patterns for each estimated match.

Run getMatches

dfA_dedupe <- getMatches(dfA = dfA, dfB = dfA, fl.out = fl_out_dedupe)

Look at the IDs of the duplicates

names(table(dfA_dedupe$dedupe.ids)[table(dfA_dedupe$dedupe.ids) > 1])

[1] "501" "502" "503" "504" "505" "506" "507" "508" "509" "510"

Show duplicated observation

dfA_dedupe[dfA_dedupe$dedupe.ids == 501,]

firstname middlename lastname housenum streetname city

77 jeffrey j blomquist 2506 anita ave Castro Valley

771 jeffrey j blomquist 2506 anita ave Castro Valley

birthyear dedupe.ids

77 1951 501

771 1951 501

Users can then dedupe data sets using the dedupe.ids covariate in the returned

data frame.

4.4 Incorporating Auxiliary Information and Post-

Processing Data Merges

Another advantage of the probabilistic modeling approach is its ability to incorporate

auxiliary information into the estimation process. This information can take the form

of ex-post adjustments or as Bayesian priors on the relevant parameters, and is easily

incorporated into the fastLink estimation step. We detail the two main auxiliary

information types — migration rate information and first name frequencies — below,

and show how to include them in model estimation. In addition, we show how to post-

process data merges by enforcing a one-to-one restriction, such that every obsevation

in dataset A is matched to at most one observation in dataset B, and vice versa.

77

4.4.1 Information on Migration Rates

One important substantive application of record linkage methodologies is to study

individuals who move across neighborhoods, states, and counties. While these indi-

viduals can be hard to track because of the loss of address information to inform the

match, their social behavior, and the behavior of those around them, is of interest to

many substantive scholars. To improve the quality of matching data sets for discov-

ering movers, we provide a few tools to calibrate match rates using known auxiliary

data on movers’ rates.

Two parameters, λ (the probability that a given pairwise comparison is a true

match) and πadr,1,0 (the probability that a true matched pair has different addresses)

can be calibrated using available auxiliary data on migration. For example, when

matching two voter files from the same state across different years, the prior on λ can

be calibrated as:

λprior =
of non-movers + # of in-state movers

NA ×NB

while the prior on πadr,1,0 can be calibrated as

πprior
adr,1,0 =

of in-state movers

of in-state movers + # of non-movers

Counts of movers can come from a number of auxilary data sources — in fastLink,

we use the IRS Statistics of Income datasets to recover these counts for within-state

and across-state movers in the United States. The IRS SOI data is a definitive source

on migration in the United States that relies on tax returns to track individual year-

78

to-year migration.3 To automatically generate these priors, we can use the function

calcMoversPriors() as follows:

priors_out <- calcMoversPriors(geo.a = "CA", geo.b = "CA",

year.start = 2014, year.end = 2015)

priors_out

$lambda.prior

[1] 6.925788742782244e-08

##

$pi.prior

[1] 0.02598119909353664

Here, we’re recovering the estimated prior values for λ and πadr,1,0 for a match of

the California voter file in 2014 to the California voter file in 2015.

We can then feed these into fastLink() using the priors.obj argument. In

order to properly specify the prior, we also need to tell fastLink() how much to

weight the prior estimates relative to the parameter estimates implied by the observed

match patterns. To weight the priors, we specify the arguments w.lambda and w.pi

as the weights for the λprior and πprior
adr,1,0, respectively. Specifying w.lambda = .25

tells fastLink() that the final estimate for λ should be a weighted average where

25% is the prior estimate, and 75% is the maximum likelihood estimate from the

observed match matterns. Lastly, when specifying a prior on the address field, we tell

fastLink() which field is an address field using the address.field argument. An

example, with priors calibrated for the test data set, is:

Reasonable prior estimates for this dataset

priors_out <- list(lambda.prior = 50/(nrow(dfA) * nrow(dfB)),

pi.prior = 0.02)

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

3The IRS Statistics of Income data for both county-to-county migration and state-to-state
migration, which dates back to 1990, is available online at https://www.irs.gov/statistics/

soi-tax-stats-migration-data.

79

https://www.irs.gov/statistics/soi-tax-stats-migration-data
https://www.irs.gov/statistics/soi-tax-stats-migration-data

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

priors.obj = priors_out,

w.lambda = .25, w.pi = .25,

address.field = "streetname"

)

We place Beta priors on the relevant parameters to maintain conjugacy, while

leaving the priors on the remaining parameters improper. Other data sources for

auxiliary information on migration can be used in fastLink() by feeding them in as

a list with the names lambda.prior or pi.prior as above.

4.4.2 Reweighting Match Probabilities Ex-Post with Name

Frequencies

We can also take advantage of information about common and uncommon first names

in order to improve match quality. Unlike the migration priors discussed above, it

is more difficult to incorporate information about name frequency into estimation

without dramatically increasing the computational cost of the estimation — instead,

we follow the existing literature (e.g. Winkler, 2000) and make an ex-post adjustment

to the estimated parameters using the name frequencies that are observed in the data.

Specifically, we correct for the possibility that a pair sharing a common first name,

such as John, may be more likely to be a true non-match than a pair sharing an

uncommon first name, such as Jocelyn.

To conduct an ex-post adjustment on observed name frequencies, the user simply

sets reweight.names = TRUE in fastLink() and provides the name of the first name

field in firstname.field, as follows:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

80

reweight.names = TRUE, firstname.field = "firstname"

)

The unweighted posterior match probabilities are then replaced with the

reweighted posterior match probabilities in the posterior slot of the returned

fastLink object.

4.4.3 Enforcing a One-to-One Merge

One issue with the probabilistic modeling framework is that a single observation

in one data set can be matched to multiple observations in the second data set.

Individuals within a household who share a name, for example, can be a challenge for

PRL models, where the posterior probability of matching can still be quite high even

if name suffixes (”Jr.”, ”Sr.”, ”III”) are different. To adjust for this, fastLink()

offers several methods to enforce a ”one-to-one” merge such that each observation in

dataset A is matched to at most one observation in dataset B, and vice versa.

The first method implemented, which is the default method used when enforcing

a one-to-one merge, is a greedy algorithm that takes the best possible match for each

observation in dataset A in dataset B, and then vice versa for dataset B among the

possible remaining matches in dataset A. Any remaining ties are broken at random.

By default, fastLink() runs the greedy de-duping algorithm after recovering all

successfully matched indices from both data sets, but it can be called explicitly by

running:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

dedupe.matches = TRUE

)

fastLink also implements a linear sum assignment solution proposed by Jaro (1989);

Winkler (1994), which maximizes the sum of the posterior match probabilities subject

81

to the one-to-one match constraint. Unlike the greedy de-duping algorithm, this

method considers all possible assignments across pairs to find the optimal set that

maximizes the sum of the posterior match probabilities, and Winkler (1994) shows

that this method is more robust than the greedy algorithm in small-to-medium-sized

data sets. However, as the size of the data grows large, the method scales poorly in

runtime, and the relative advantages in accuracy are smaller. However, we recommend

this method for smaller data merging problems. Users can implement the linear sum

assignment de-duping method by setting linprog.dedupe = TRUE, as follows:

fl_out <- fastLink(

dfA = dfA, dfB = dfB,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear"),

dedupe.matches = TRUE, linprog.dedupe = TRUE

)

4.5 Preprocessing Data Merges

While much of fastLink focuses on improving the speed and quality of the Fellegi-

Sunter model, the success of a data merge is fundamentally dependent on prepro-

cessing and cleaning decisions made by the analyst. Such decisions include ensuring

that both data sets abide by similar rules about leading zeros, that they both split

strings of names into first/middle/last names in identical ways, that abbreviations

such as Rd. are changed to be equivalent to Road, and that accents in names are

handled in similar ways. Here, we describe some tools for effectively harmonizing

data sets before conducting a merge using fastLink, along with tools for blocking data

in preparation for a match.

4.5.1 Cleaning and Harmonizing Strings

Preprocessing string data for a data merge generally proceeds in two steps — first,

data is tokenized into similar fields (from “Benjamin Haber Fifield” to “Benjamin”,

82

“Haber”, and “Fifield” for names, and from “19 Crawford Road” to “19”, “Crawford”,

and “Road” for addresses), and then harmonizing those fields using some manner of

text standardization. While we do not implement the tokenization step in fastLink,

we will discuss a Python library called probablepeople that we have used extensively

in our own substantive work. We will then briefly introduce a function in fastLink,

preprocText(), for standardizing and harmonizing text fields that have already been

tokenized using United States Postal Service benchmarks for standardization.

Tokenizing String Data

While we do not implement tokenizing ourselves in fastLink, we recommend that users

seeking to tokenize data use the Python library probablepeople for personal and corpo-

ration names and usaddress for addresses, which we have used in our own substantive

applications. Both libraries use pre-trained conditional random field models to split

name, entity, and address strings into specific components such as first name, last

name, and suffix (for names), corporation name and corporation legal type (for cor-

porations and entities), and street number, street name, town, state, and zip code

(for addresses).

Below we show a simple example where we use probablepeople to parse strings

of corporation names and personal names into separate components. For a given

string, we simply use the tag() function in the probablepeople library, which outputs

an ordered dictionary where each identified component is assigned to one of several

pre-defined tags. For names, these tags include FirstName, Surname, Nickname,

PrefixMarital, and others.4 Corporations have their own set of pre-defined tags for

the separate components.

Parsing personal and corporation names using probablepeople

import probablepeople as pp

4See the documentation for probablepeople at https://probablepeople.readthedocs.io/en/

latest/ for more detail.

83

https://probablepeople.readthedocs.io/en/latest/
https://probablepeople.readthedocs.io/en/latest/

name_str = 'Ted Enamorado'

uni_str = 'Princeton University'

name_str_parsed = pp.tag(name_str)

uni_str_parsed = pp.tag(uni_str)

print "Parsed fields for name:"

for key in name_str_parsed[0]:

print("{}: {}".format(key, name_str_parsed[0][key]))

print "\n"

print "Parsed fields for university:"

for key in uni_str_parsed[0]:

print("{}: {}".format(key, uni_str_parsed[0][key]))

Parsed fields for name:

GivenName: Ted

Surname: Enamorado

##

##

Parsed fields for university:

CorporationName: Princeton

CorporationNameOrganization: University

We can apply the same methodology to address strings in order to parse them

into usable components. Again, the tag() function will take an input string and

output an ordered dictionary with pre-defined tags. Valid tags for addresses include

AddressNumber, BuildingName, StateName, PlaceName, and ZipCode, among other

tags.5

Parsing addresses using usaddress

import usaddress as usr

adr_string = '001 Fisher Hall, Princeton, NJ 08540'

adr_str_parsed = usr.tag(adr_string)

print "Parsed fields for address:"

5See the documentation for usaddress at https://usaddress.readthedocs.io/en/latest/ for
more detail.

84

https://usaddress.readthedocs.io/en/latest/

for key in adr_str_parsed[0]:

print("{}: {}".format(key, adr_str_parsed[0][key]))

Parsed fields for address:

AddressNumber: 001

StreetName: Fisher Hall

PlaceName: Princeton

StateName: NJ

ZipCode: 08540

Once parsed, these tagged fields can be used as inputs for fastLink() as addi-

tional fields to match datasets on. However, we remind users that once parsed, the

original string should not be fed into fastLink() in addition to the parsed strings.

Doing so, in addition to leading to longer runtimes, will violate the conditional in-

dependence assumption such that the agreement patterns of the parsed fields will be

dependent on the agreement patterns of the un-parsed fields.

Harmonizing String Fields

Once strings are parsed into individual components that will be used for a match,

we also have to ensure that the same field across datasets handles the same data

identically. For example, if street types in dataset A are ‘Road’, ‘Street’, and ‘Av-

enue’, but in dataset B they are ‘Rd.’, ‘St.’, and ‘Ave.’, these true matches will be

coded by fastLink (and any other matching algorithm) as a non-match on that vari-

able. To ensure harmonization across dataset by field, we provide a function for text

standardization, preprocText(), that can help ensure this equivalence across datasets.

The function preprocText() takes as argument a vector of text, which it assumes

has already been split into fields, and then provides a number of options for conver-

sion. The options applicable to all string types include tolower (convert all text to

lower-case), remove whitespace (strip leading and trailing whitespace, and convert

multiple spaces to single space), and remove punctuation (remove all punctuation

85

such as apostrophes, semi-colons, colons, periods, question marks, etc.). For example,

we can convert text as follows:

preprocText(text = " Road.", tolower = TRUE,

remove_whitespace = TRUE, remove_punctuation = TRUE)

[1] "road"

For names, preprocText() also implements Soundex encoding from the

stringdist package. The Soundex algorithm is used by the U.S. Census Bu-

reau to increase the likelihood of matches across similar-sounding names — for

example, while Rupert and Robert are spelled differently and would be coded as

non-matches by any string distance measure, Soundex encodings of both names are

identical. We refer users to other references (e.g. Knuth, 1973, pgs. 391-92) for a

full description of the algorithm, but as an overview, the algorithm keeps the first

letter of a string and then follows a series of rules to convert the remaining portion

of the string to a three-digit numerical code based on letter combinations that are

similar in sound. Below, we show the output from a Soundex conversion of Rupert

and Robert:

preprocText(text = c("Rupert", "Robert"), soundex = TRUE)

[1] "R163" "R163"

Finally, for addresses, we also implement United States Postal Service (USPS)

address standardization of street names to ensure all street types (for example, Road,

Street, and Avenue) are consistently recorded across data sets. The USPS converts all

street types to standard abbreviations (such as ‘Road’ to ‘Rd.’ and ‘Street’ to ‘St.’),

and we implement the same conversion in preprocText() through the usps address

argument:

86

preprocText(text = c("Street", "Boulevard"), usps_address = TRUE)

[1] "st" "blvd"

Together, these resources can help ensure the uniformity across data sets of string

variables before conducting a data merge.

4.5.2 Blocking Data to Improve Merge Quality

fastLink also includes a series of tools to help block data sets before conducting a

merge. The goal of blocking is to avoid comparisons between observations that are

certain non-matches, in order to increase the amount of overlap between data sets and

to reduce computation time resulting from irrelevant comparisons. For example, if an

analyst is certain there are no true matches across states when merging survey data to

voter files, they can block by state and only compare observations within states. We

refer readers interested in a comprehensive review of blocking techniques to Christen

(2012) and Steorts et al. (2014) — here, we will cover the methods implemented

in fastLink for blocking data before conducting the merge, and for identifying and

removing observations with no obvious candidate matches.

In fastLink, the function blockData() can block two data sets using a single

variable or combinations of variables using several different blocking techniques. The

basic functionality is similar to that of fastLink(), where the analyst inputs two data

sets and a vector of variable names that they want to block on. A simple example

follows, where we are blocking the two sample data sets by gender:

blockgender_out <- blockData(dfA, dfB, varnames = "gender")

##

====================

blockData(): Blocking Methods for Record Linkage

====================

##

Blocking variables.

87

Blocking variable gender using exact blocking.

##

Combining blocked variables for final blocking assignments.

names(blockgender_out)

[1] "block.1" "block.2"

In its simplest usage, blockData() takes two data sets and a single variable name

for the varnames argument, and it returns the indices of the member observations

for each block. Data sets can then be subsetted as follows and the match can then

be run within each block separately:

Subset dfA into blocks

dfA_block1 <- dfA[blockgender_out$block.1$dfA.inds,]

dfA_block2 <- dfA[blockgender_out$block.2$dfA.inds,]

Subset dfB into blocks

dfB_block1 <- dfB[blockgender_out$block.1$dfB.inds,]

dfB_block2 <- dfB[blockgender_out$block.2$dfB.inds,]

Run fastLink on each

fl_out_block1 <- fastLink(

dfA_block1, dfB_block1,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear")

)

fl_out_block2 <- fastLink(

dfA_block2, dfB_block2,

varnames = c("firstname", "lastname", "housenum",

"streetname", "city", "birthyear")

)

Blocking on gender substantially reduces the number of comparisons fastLink has

to make. Without blocking, fastLink makes 510 × 350 = 178,500 comparisons, and

the probability that any given comparison is a match is 0.00029. However, when

blocking on gender, fastLink makes 269 × 165 + 241 × 185 = 88,970 comparisons,

while the baseline probability of finding a match goes up to 0.00056 in Block 1, and

88

0.00058 in Block 2. Stricter blocking strategies, of course, will reduce the number of

comparisons even further.

Furthermore, blockData() allows analysts to go beyond exact blocking on a single

variable. Users can block on multiple variables by feeding a vector of variable names

to varnames, as follows:

Exact block on gender and city

blockdata_out <- blockData(dfA, dfB, varnames = c("gender", "city"))

blockData() also implements other methods of blocking other than exact block-

ing. Analysts commonly use window blocking for numeric variables, where a given

observation in dataset A will be compared to all observations in dataset B where

the value of the blocking variable is within ±K of the value of the same variable in

dataset A. The value of K is the size of the window — for instance, if we wanted to

compare observations where birth year is within ±1 year, the window size is 1. Below,

we block dfA and dfB on gender and birth year, using exact blocking on gender and

window blocking with a window size of 1 on birth year:

Exact block on gender, window block (+/- 1 year) on birth year

blockdata_out <- blockData(

dfA, dfB,

varnames = c("gender", "birthyear"),

window.block = "birthyear", window.size = 1

)

blockData() also allows users to block variables using k-means clustering, so that

similar values of string and numeric variables are blocked together. When applying

k-means blocking to string variables such as name, the algorithm orders observations

so that alphabetically close names are grouped together in a block. In the following

example, we block dfA and dfB on gender and first name, again using exact blocking

on gender and k-means blocking on first name while specifying 2 clusters for the

k-means algorithm:

89

Exact block on gender, k-means block on first name with 2 clusters

blockdata_out <- blockData(

dfA, dfB,

varnames = c("gender", "firstname"),

kmeans.block = "firstname", nclusters = 2

)

In addition to the blocking functionalities, fastLink also includes methods to help

researchers discard observations with no obvious matching candidates in the paired

data set using string distance comparisons. stringSubset() calculates the string

distance between each pair of observations in two data sets and returns the indices

where there is at least one candidate match with a string similarity measure above

a certain threshold. That is, it reduces the set of candidate matches by throwing

out any observation in dataset A where no observation in dataset B has a sufficiently

similar first name/last name/street name, and vice versa.

As an example, we will reduce the set of candidate matches by discarding any ob-

servation in the two sample datasets where the Jaro-Winkler string similarity measure

is below 0.8, as follows:

stringsub_out <- stringSubset(dfA$firstname, dfB$firstname,

similarity.threshold = .8,

stringdist.method = "jw")

names(stringsub_out)

[1] "dfA.inds" "dfB.inds"

In the output object, dfA.inds contains the indices of the observations in dfA

where at least one observation in dfB has a sufficiently similar first name, and

vice versa for dfB.inds. This procedure has also reduced the number of possible

comparisons — whereas the standard merge has to make 178,500 comparisons, now

fastLink() only has to make 145,222 comparisons within the subsetted data frames.

stringSubset() also allows users to specify Jaro string-distance measures and Lev-

enshtein distances instead of the default Jaro-Winkler distance.

90

4.6 Application — Party Switching in Brazil

We illustrate a data merging workflow using fastLink by merging two datasets of local

politicians in Rio de Janeiro, Brazil to estimate rates of party switching between 2012

and 2016. The data, obtained from the Brazil’s Tribunal Superior Eleitoral (TSE),

records the names, party affiliations, and background information of all local poiti-

cians in Rio, and as the string fields are manually entered possible misspellings can

lead to errors when attempting to exact-match.6 Therefore, a PRL approach can help

control the false negative rate that exact matching can exacerbate. Importantly, the

data includes a perfectly recorded unique identifier, which can be used to validate the

accuracy of the PRL model — the Cadastro de Pessoas F́ısicas (CPF), the Brazilian

individual taxpayer registry identification number. Therefore, the data is a valuable

naturalistic test of PRL models that can be easily validated.

The data merge proceeds in three steps — first, we harmonize the merging fields

to be consistent across the two data sets and create the variables necessary for the

merge. Next, we create blocks to increase overlap while minimizing the false negative

rate, and then run the merge block-by-block. We then examine some basic diagnostics

of the merge, and importantly, we validate the merge against the ground truth using

the CPF and compare against an exact matching strategy. Finally, we analyze rates

of party switching from the fastLink-merged data and compare to results that use the

exact-merged data.

Data Cleaning In the first step of the merge, we construct variables that can be

used to help identify true matches. As the data is relatively clean to begin with, and

there is no information on addresses in the data that can be used to inform the merge

beyond province, we focus on constructing useful name and age variables.

6The raw TSE data is available from http://www.tse.jus.br/eleicoes/estatisticas/

repositorio-de-dados-eleitorais-1/repositorio-de-dados-eleitorais.

91

http://www.tse.jus.br/eleicoes/estatisticas/repositorio-de-dados-eleitorais-1/repositorio-de-dados-eleitorais
http://www.tse.jus.br/eleicoes/estatisticas/repositorio-de-dados-eleitorais-1/repositorio-de-dados-eleitorais

The raw name data for the politicians comes as a single string, so we start by

tokenizing the names into first, middle, and last names. While probablepeople, which

we introduced in Section 4.5.1, is most useful for messy and unstructured name fields,

the Brazil data is already fairly clean — therefore, we rely on the parse names()

function in the humaniformat R package to split the names into first, middle, and last

name. We will compare both fields using string-distance measures in fastLink, with

an included partial match category.

Load data

load("../linkage/data/data2012_candidatesRJ.RData")

load("../linkage/data/data2016_candidatesRJ.RData")

Parse name variables

data2012_names <- parse_names(data.2012.RJ$candidate_name)

data2016_names <- parse_names(data.2016.RJ$candidate_name)

data.2012.RJ$first_name <- data2012_names$first_name

data.2012.RJ$middle_name <- data2012_names$middle_name

data.2012.RJ$last_name <- data2012_names$last_name

data.2016.RJ$first_name <- data2016_names$first_name

data.2016.RJ$middle_name <- data2016_names$middle_name

data.2016.RJ$last_name <- data2016_names$last_name

As entered in the raw data, birth date can only be compared using string distances,

which are inappropriate for the underlying numeric data. We parse the birth dates

into R’s date class, and then calculate each politician’s age in years. We will compare

the age field across data using numeric matching, where an exact match is any set of

ages within ±1 year and a partial match is within ±2.5 years.

Parse age variable

data.2012.RJ$age <- floor(

age_calc(

as.Date(data.2012.RJ$candidate_dob, format = "%d/%m/%Y"),

units = "years"

)

92

)

data.2016.RJ$age <- floor(

age_calc(

as.Date(data.2016.RJ$candidate_dob, format = "%d/%m/%Y"),

units = "years"

)

)

Blocking the Data Having harmonized the fields across the 2012 and 2016 data

sets, we then block the data to increase the amount of overlap between the data being

matched. Correctly chosen blocking variables attempt to minimize the false negative

rate across blocks — that is, since observations grouped into different blocks will not

be compared, there should be as few true positives as possible assigned to different

blocks. More formally, if bi indicates the block of observation i, we want to ensure

that

Pr(Mij = 1 | bi 6= bj) = 0

We choose the politician’s home municipality for this reason. First, there are 92

municipalities in Rio, which will substantially reduce the number of comparisons to

make. We also know a priori that municipality is perfectly recorded in the data, that

the municipality lines did not change between 2012 and 2016, and that very few local

politicians moved across municipal lines between 2012 and 2016, which gives us high

confidence that the true match rate across blocks is nearly 0. We create the blocks

as follows:

Block datasets by municipality

block_out <- blockData(

dfA = data.2012.RJ, dfB = data.2016.RJ,

varnames = "mun_name"

)

We can check exactly how much the comparison space is reduced. Unblocked,

fastLink has to conduct 21,905 × 22,346 = 489,489,130 comparisons, which is large but

93

feasible. After blocking, this comparison space is reduced to 9,630,656 comparisons,

or 1.97% of the original comparison task with minimal loss of true matches.

Conducting the Merge Now that both datasets are harmonized with the merging

variables and blocked, we can run fastLink within each block to merge the full data

set. Within each block, we first subset the data, and then merge the subsetted data

frames on first, middle, and last name, age, gender, and candidate marital status.

First, middle, and last name is compared using string distances, marital status is

compared using exact comparisons, and age is compared using numeric distance. All

distance cutoffs use the fastLink defaults to determine whether a comparison on a

particular variable is a match, a partial match, or a non-match. We declare any pair

with a posterior match probability above 0.85 (the fastLink default) to be a match

and store the successful matches, and we also store the fl out objects for analysis.

Loop over blocks and merge

match_out <- vector(mode = "list", length = length(block_out))

flobj_out <- vector(mode = "list", length = length(block_out))

for(i in 1:length(block_out)){

Subset data

data.2012.sub <- data.2012.RJ[block_out[[i]]$dfA.inds,]

data.2016.sub <- data.2016.RJ[block_out[[i]]$dfB.inds,]

Run fastLink

fl_out <- fastLink(

dfA = data.2012.sub, dfB = data.2016.sub,

varnames = c("first_name", "middle_name", "last_name",

"age", "candidate_mar_status_desc"),

stringdist.match = c("first_name", "middle_name", "last_name"),

numeric.match = "age",

partial.match = c("first_name", "last_name", "age")

)

Get matches, store

match_out[[i]] <- getMatches(

dfA = data.2012.sub, dfB = data.2016.sub, fl.out = fl_out,

threshold.match = 0.85, combine.dfs = FALSE

94

)

flobj_out[[i]] <- fl_out

}

Combine data frames

match_2012 <- do.call("rbind", lapply(match_out, "[[", "dfA.match"))

match_2016 <- do.call("rbind", lapply(match_out, "[[", "dfB.match"))

Having run the match, we can now examine the estimated quality of the matches

using the confusion() function. In addition to estimating summary statistics for a

single fastLink object, confusion() can also aggregate over multiple (non-overlapping)

blocks to generate estimates of the false positive rate, false negative rate, sensitivity,

specificity, and other summary statistics.

confusion(flobj_out)

$confusion.table

'True' Matches 'True' Non-Matches

Declared Matches 6619.64 22.36

Declared Non-Matches 11.14 15251.86

##

$addition.info

results

Max Number of Obs to be Matched 21905.00

Sensitivity (%) 99.83

Specificity (%) 99.85

Positive Predicted Value (%) 99.66

Negative Predicted Value (%) 99.93

False Positive Rate (%) 0.15

False Negative Rate (%) 0.17

Correctly Classified (%) 99.85

F1 Score (%) 99.75

The estimates from the model suggest that fastLink() has effectively minimized

both the false positive and the false negative rate. Out of a total of 6,642 estimated

matches, only 22.36 are estimated to be false positives. Likewise, out of the estimated

15,263 non-matches, only 11.14 are estimated to be false negatives.

95

Exact Match fastLink Match
True Match True Non-Match True Match True Non-Match

Declared Match 63.3% 0.0781% 95% 2.75%
Declared Non-Match 36.7% 99.9% 5.01% 97.2%

Table 4.1: Validation of the TSE data merge using the CPF number. This table shows
the true classification accuracy of the exact matching strategy (left) and fastLink-
matching strategy (right) using the CPF unique identifier. While the exact matching
strategy minimizes false positives, it does so at the cost of a large number of false
negatives — true matches that were incorrectly classified as non-matches. In contrast,
while the fastLink matching strategy does slightly worse on the false positive rate, it
substantially out-performs an exact matching strategy on the false negative rate.

Comparison to Ground Truth A benefit of the TSE data is the existence of a

ground truth that can be used to calculate actual classification accuracy, using the

CPF number of every observation in the data. If we had merged these data on CPF,

we would get a completely accurate match — however, here we use it as a validation

technique to compare fastLink against the exact matching strategy. To conduct an

exact match, we create a unique key for each observation out of first, middle, and

last name, age, and candidate marital status (the same variables used for the fastLink

merge) and then run an inner join on those variables. Table 4.1 gives the results of

the validation exercise.

First, looking at the results for the exact matching strategy, we see that it controls

the false positive rate effectively. In order to be declared a true match, a pair of

observations must match exactly on all three name fields, plus age, plus marital

status — a stringent requirement that leads to nearly none of the declared matches

being misclassified. However, this comes at a cost — as we make the threshold for

being declared a true match more and more stringent, we increase the false negative

rate, where true matches are incorrectly declared non-matches. It is clear that the

exact matching strategy falls short here — 36.7% of all true matches are incorrectly

declared non-matches, due to minor misspellings and other administrative errors that

the exact matching strategy cannot accomodate.

96

In contrast, the PRL strategy implemented in fastLink does substantially better in

avoiding false negatives. Only 5.01% of true matches are incorrectly classified as non-

matches, since fastLink and other PRL implementations can efficiently incorporate

information on string distances, partial matches and other types of distance measures

that exact matching strategies cannot use. This does come at a small cost — while

the exact matching strategy reduces the false positive rate nearly to 0, the PRL

approach introduces a small number of false positives. However, it is clear that PRL

using fastLink balances the false positive rate and the false negative rate much more

effectively than an exact matching approach, leading to more accurate analyses using

merged data sets.

Analyzing Party-Switching in Rio de Janeiro Using the merged data, we can

answer substantive questions about party alignment and politician behavior over time

in Rio de Janeiro. Here, we focus on party-switching behavior, where one politician

may switch parties for strategic reasons. We start by getting the ground truth of

party-switching by merging the 2012 and 2016 data on CPF — out of a total of

6,594 politicians that are in both data sets, 68.44% switch political parties between

2012 and 2016. The fastLink-merged data gets very close to this benchmark, slightly

overestimating the true party-switching rate at 70.23%.

In Figure 4.3, we also break down the party-switching rates in Rio by municipality.

Party-switching rates derived from the ground truth are on the left, while those

from the fastLink match are on the right. We can see that the party-switching rates

from fastLink correlate closely with the ground truth. Both uncover similar levels of

high party-switching behavior across Rio, but also similar geographic distributions

of party-switching. The highest rates of party-switching are in the periphery of Rio,

while party-switching is highest in more geographically central municipalities.

97

Truth fastLink

−45 −44 −43 −42 −41 −45 −44 −43 −42 −41

−23.0

−22.5

−22.0

−21.5

−21.0

Longitude

La
tit

ud
e

0.4 0.6 0.8

Party
Switching
Rate

Party−Switching in Rio de Janeiro − Comparing fastLink to Ground Truth

Figure 4.3: Party-switching by municipality in Rio de Janeiro. The left-hand plot
shows the true rates of party switching across Rio de Janeiro between 2012 and 2016,
while the right-hand plot shows the party-switching rate estimated after matching
the 2012 and 2016 TSE data using fastLink.

4.7 Conclusion

In this paper, we describe the functionalities of the fastLink package, which implements

an improved algorithm for merging data under the Fellegi-Sunter probabilistic record

linkage model. The package implements a general version of the algorithm, along

with a number of improvements such as easy handling of missing data, incorporation

of auxiliary information, numeric and string-distance measures for calculating match

patterns, and parallelization to improve the computational efficiency of the algorithm.

In addition, numerous functionalities for standardizing and pre-processing data, in-

cluding blocking and string-distance thresholding techniques, are implemented. As

the literature on record linkage continues to grow, driven in large part by the number

of social scientists utilizing cutting-edge data sets in their research, we hope that

fastLink can serve as a platform for the continued implementation and improvement

of these new methods.

98

Bibliography

Altman, Micah and Michael P. McDonald. 2011. “BARD: Better Automated Redis-

tricting.” Journal of Statistical Software 42:1–28.

Athey, Susan and Guido Imbens. 2016. “Recursive Partitioning for Heterogeneous

Causal Effects.” Proceedings of the National Academy of Sciences 113:7353–7360.

Athey, Susan, Julie Tibshirani and Stefan Wager. 2017. “Generalized Random

Forests.” Working Paper.

Athey, Susan and Stefan Wager. Forthcoming. “Estimation and Inference of Het-

erogeneous Treatment Effects using Random Forests.” Journal of the American

Statistical Association.

Bansak, Kirk. 2018. “A Generalized Framework for the Estimation of Causal Mod-

eration Effects with Randomized Treatments and Non-Randomized Moderators.”

Working Paper.

Breiman, Leo. 2001. “Random Forests.” Machine Learning 45:5–32.

Browdy, Michelle H. 1990. “Simulated Annealing: An Improved Computer Model for

Political Redistricting.” Yale Law & Policy Review 8:163–179.

Chen, Jowei. 2017. Expert Report of Jowei Chen, Ph.D. Technical Report. Depart-

ment of Political Science, University of Michigan.

Chen, Jowei and Jonathan Rodden. 2013. “Unintentional Gerrymandering: Politi-

cal Geography and Electoral Bias in Legislatures.” Quarterly Journal of Political

Science 8:239–269.

99

Chikina, Maria, Alan Frieze and Wesley Pegden. 2017. “Assessing significance in a

Markov chain without mixing.” Proceedings of the National Academy of Sciences

of the United States of America 114:2860–2864.

Cho, Wendy Tam. 2017. Expert Report of Wendy K. Tam Cho, RE: League of Women

Voters v. Wolf et al. Technical Report. Department of Political Science, University

of Illinois-Urbana Champaign.

Chou, Chung-I and S. P. Li. 2006. “Taming the Gerrymander — Statistical physics

approach to Political Districting Problem.” Physica A: Statistical Mechanics and

its Applications 369:799–808.

Christen, Peter. 2012. Data Matching. Concepts and Techniques for Record Linkage,

Entity Resolution, and Duplicate Detection. Springer.

Cirincione, Carmen, Thomas A. Darling and Timothy G. O’Rourke. 2000. “Assessing

South Carolina’s 1990s congressional districting.” Political Geography 19:189–211.

Dempster, Arthur P., Nan M. Laird and Donald B. Rubin. 1977. “Maximum Likeli-

hood from Incomplete Data Via the EM Algorithm (with Discussion).” Journal of

the Royal Statistical Society, Series B, Methodological 39:1–37.

Ding, Peng, Avi Feller and Luke Miratrix. 2016. “Randomization Inference for Treat-

ment Effect Variation.” Journal of the Royal Statistical Society, Series B 78:655–

671.

Ding, Peng, Avi Feller and Luke Miratrix. Forthcoming. “Decomposing Treatment

Effect Variation.” Journal of the American Statistical Association.

Enamorado, Ted, Benjamin Fifield and Kosuke Imai. 2017. Using a Probabilistic

Model to Assist Merging of Large-scale Administrative Records. Technical Report.

Department of Politics, Princeton University.

Fellegi, I. P. and A. B. Sunter. 1969. “A Theory for Record Linkage.” Journal of the

American Statistical Association. 64:1183–1210.

100

Fifield, Benjamin, Alexander Tarr and Kosuke Imai. 2015. “redist: Markov Chain

Monte Carlo Methods for Redistricting Simulation.” available at the Compre-

hensive R Archive Network (CRAN). https://CRAN.R-project.org/package=

redist.

Fifield, Benjamin, Michael Higgins, Kosuke Imai and Alexander Tarr. 2018. A New

Automated Redistricting Simulator Using Markov chain Monte Carlo. Technical

Report. Department of Politics, Princeton University.

Fryer, Roland G. Jr. and Richard Holden. 2011. “Measuring the Compactness of

Political Districting Plans.” Journal of Law and Economics 54:493–535.

Garfinkel, R. S. and G. L. Nemhauser. 1970. “Political Districting by Implicit Enu-

meration Techniques.” Management Science 16:B495–B508.

Gelman, Andrew and Donald B. Rubin. 1992. “Inference from Iterative Simulations

Using Multiple Sequences (with Discussion).” Statistical Science 7:457–472.

Gerber, Alan, Donald Green and Christopher Larimer. 2008. “Social Pressure and

Voter Turnout: Evidence from a Large-Scale Field Experiment.” American Political

Science Review 102:33–48.

Geyer, Charles J. 1992. “Practical Markov Chain Monte Carlo.” Statistical Science

7:473–511.

Geyer, Charles J. and Elizabeth A. Thompson. 1995. “Annealing Markov Chain

Monte Carlo with Applications to Ancestral Inference.” Journal of the American

Statistical Association 90:909–920.

Grimmer, Justin, Solomon Messing and Sean Westwood. 2017. “Estimating Het-

erogeneous Treatment Effects and the Effects of Heterogeneous Treatments with

Ensemble Methods.” Political Analysis 25:413–434.

Gutierrez, Pierre and Jean-Yves Gerardy. 2016. Causal Inference and Uplift Model-

ing: A Review of the Literature. In JMLR: Workshop and Conference Proceedings.

Vol. 67 pp. 1–16.

101

https://CRAN.R-project.org/package=redist
https://CRAN.R-project.org/package=redist

Herschlag, Gregory, Han Sung Kang, Justin Luo, Christy Vaughn Graves, Sachet

Bangia, Robert Ravier and Jonathan Mattingly. 2018. Quantifying Redistricting

in North Carolina. Technical Report. Department of Mathematics, Duke University.

Herschlag, Gregory, Robert Ravier and Jonathan C. Mattingly. 2017. Evaluating

Partisan Gerrymandering in Wisconsin. Technical Report. Department of Mathe-

matics, Duke University.

Hersh, Eitan. 2015. Hacking the Electorate: How Campaigns Perceive Voters. Cam-

bridge University Press.

Hess, S. W., J. B. Weaver, H. J. Siegfeldt, J. N. Whelan and P. A. Zitlau. 1965.

“Nonpartisan Political Redistrictingn by Computer.” Operations Research 13:998–

1006.

Hill, Jennifer. 2011. “Bayesian Nonparametric Modeling for Causal Inference.” Jour-

nal of Computational and Graphical Statistics 20:217240.

Holland, Paul. 1986. “Statistics and Causal Inference.” Journal of the American

Statistical Association 81:945–960.

Imai, Kosuke and Aaron Strauss. 2011. “Estimation of Heterogeneous Treatment

Effects from Randomized Experiments, with Application to the Optimal Planning

of the Get-Out-the-Vote Campaign.” Political Analysis 19:1–19.

Imai, Kosuke and Marc Ratkovic. 2013. “Estimating Treatment Effect Heterogeneity

in Randomized Program Evaluation.” Annals of Applied Statistics 7:443–470.

Jaro, Matthew. 1989. “Advances in Record-Linkage Methodology as Applied to

Matching the 1985 Census of Tampa, Florida.” Journal of the American Statis-

tical Association. 84:414–420.

Kalla, Joshua and David Broockman. 2018. “The Minimal Persuasive Effects of

Campaign Contact in General Elections: Evidence from 49 Field Experiments.”

American Political Science Review 112:148–166.

102

Kawahara, Jun, Takashi Horiyama, Keisuke Hotta and Shin-ichi Minato. 2017. Gen-

erating All Patterns of Graph Partitions Within a Disparity Bound. In WAL-

COM 2017: International Workshop on Algorithms and Computation. WALCOM

pp. 119–131.

Kern, Holger and Donald Green. 2012. “Modeling Heterogeneous Treatment Effects

in Survey Experiments with Bayesian Additive Regression Trees.” Public Opinion

Quarterly 76:491511.

King, Gary and Robert X. Browning. 1987. “Democratic Representation and Partisan

Bias in Congressional Elections.” American Political Science Review 81:1251–1276.

Knuth, Donald. 1973. The Art of Computer Programming: Volume 3, Sorting and

Searching. Addison-Wesley.

Kunzel, Soeren, Jasjeet Sekhon, Peter Bickel and Bin Yu. 2018. “Meta-learners for

Estimating Heterogeneous Treatment Effects using Machine Learning.” Working

Paper.

Lam, Patrick. 2013. “Estimating Individual Causal Effects.” Dissertation.

Larsen, Michael D. and Donald B. Rubin. 2001. “Iterative Automated Record Linkage

Using Mixture Models.” Journal of the American Statistical Association 96:32–41.

Levenshtein, V.I. 1965. “Binary Codes Capable of Correcting Deletions, Insertions,

and Reversals.” Doklady Akademii Nauk SSSR 163:845–848.

Liu, Yan Y., Wendy K. Tam Cho and Shaowen Wang. 2016. “PEAR: a massively

parallel evolutionary computation approach for political redistricting optimization

and analysis.” Swarm and Evolutionary Computation 30:78–92.

Magleby, Daniel and Daniel Mosesson. 2018. “A New Approach for Developing Neu-

tral Redistricting Plans.” Political Analysis 26:147–167.

Marinari, E. and Giorgio Parisi. 1992. “Simulated Tempering: A New Monte Carlo

Scheme.” Europhysics Letters 19:451–458.

103

Massey, Douglas and Nancy Denton. 1988. “The Dimensions of Racial Segregation.”

Social Forces 67:281–315.

Mattingly, Jonathan. 2017. Report on Redistricting: Drawing the Line. Technical

Report. Department of Mathematics, Duke University.

Mattingly, Jonathan C. and Christy Vaughn. 2014. Redistricting and the Will of the

People. Technical Report. Department of Mathematics, Duke University.

McCarty, Nolan, Keith T. Poole and Howard Rosenthal. 2009. “Does Gerrymandering

Cause Polarization?” Amerian Journal of Political Science 53:666–680.

Nagel, Stuart S. 1965. “Simplified Bipartisan Computer Redistricting.” Stanford Law

Journal 17:863–899.

Naranjo, Oscar Mesalles. 2012. “Testing a New Metric for Uplift Models.” Disserta-

tion.

Pegden, Wesley. 2017. Pennsylvania’s Congressional districting is an Outlier: Expert

Report. Technical Report. Department of Mathematics, Carnegie Mellon Univer-

sity.

Ratkovic, Marc and Dustin Tingley. 2017. “Sparse Estimation and Uncertainty with

Application to Subgroup Analysis.” Political Analysis 25:1–40.

Ratkovic, Marc and Dustin Tingley. 2018. “The Method of Direct Estimation for

Causal Inference.” Working Paper.

Sadinle, Mauricio. 2014. “Detecting Duplicates in a Homicide Registry Using a

Bayesian Partitioning Approach.” Annals of Applied Statistics. 8:2404–2434.

Sadinle, Mauricio and Stephen Fienberg. 2013. “A Generalized Fellegi-Sunter Frame-

work for Multiple Record Linkage With Application to Homicide Record Systems.”

Journal of the American Statistical Association. 108:385–397.

104

Samii, Cyrus, Laura Paler and Sarah Daly. 2017. “Retrospective Causal Inference

with Machine Learning Ensembles: An Application to Anti-Recidivism Policies in

Colombia.” Political Analysis 24:434–456.

Shiraito, Yuki. 2016. “Uncovering Heterogeneous Treatment Effects.” Working Paper.

Sinclair, Betsy, Margaret McConnell and Donald Green. 2012. “Detecting Spillover

Effects: Design and Analysis of Multilevel Experiments.” American Journal of

Political Science 56:1055–1069.

Steorts, Rebecca C., Samuel L. Ventura, Mauricio Sadinle and Stephen E. Fienberg.

2014. A Comparison of Blocking Methods for Record Linkage. In Lecture Notes in

Computer Science. Vol. 8744 Privacy in Statistical Databases pp. 253–268.

Stephanopoulos, Nicholas and Eric McGhee. 2015. “Partisan Gerrymandering and

the Efficiency Gap.” University of Chicago Law Review 82:831–900.

Tam Cho, Wendy and Yan Liu. 2016. “Toward a Talismanic Redistricting Tool: A

Computational Method for Identifying Extreme Redistricting Plans.” Election Law

Journal 15:351–366.

Thibaudeau, Yves. 1993. “The Discrimination Power of Dependency Structures in

Record Linkage.” Survey Methodology.

van der Laan, Mark, Eric Polley and Alan Hubbard. 2007. “Super Learner.” Statistical

Applications in Genetics and Molecular Biology 81:1–21.

Vickrey, William. 1961. “On the Prevention of Gerrymandering.” Political Science

Quarterly 76:105–110.

Wang, Sam S.-H. 2016. “Three Tests for Practical Evaluation of Partisan Gerryman-

dering.” Stanford Law Review 68:1263–1321.

Weaver, James B. and Sidney W. Hess. 1963. “A Procedure for Nonpartisan District-

ing: Development of Computer Techniques.” Yale Law Journal 73:288–308.

105

Winkler, William E. 1988. Using the EM Algorithm for Weight Computation in the

FellegiSunter Model of Record Linkage. In Proceedings of the Section on Survey

Research Methods, American Statistical Association. pp. 667–671.

Winkler, William E. 1989. Near Automatic Weight Computation in the Fellegi-Sunter

Model of Record Linkage. Technical Report. Proceedings of the Census Bureau

Annual Research Conference.

URL: https: // www. researchgate. net/ publication/ 243778219_ Near_

Automatic_ Weight_ Computation_ in_ the_ Fellegi-Sunter_ Model_ of_

Record_ Linkage

Winkler, William E. 1990. “String Comparator Metrics and Enhanced Decision Rules

in the Fellegi-Sunter Model of Record Linkage.” Proceedings of the Section on

Survey Research Methods. American Statistical Association.

URL: https: // www. iser. essex. ac. uk/ research/ publications/ 501361

Winkler, William E. 1993. “Improved Decision Rules in the Fellegi-Sunter Model of

Record Linkage.” In Proceedings of Survey Research Methods Section, American

Statistical Association.

URL: http: // ww2. amstat. org/ sections/ srms/ Proceedings/ papers/

1993_ 042. pdf

Winkler, William E. 1994. Advanced Methods for Record Linkage. Technical Report.

Proceedings of the Section on Survey Research Methods, American Statistical As-

sociation.

Winkler, William E. 2000. Using the EM Algorithm for Weight Computation in the

Felligi-Sunter Model of Record Linkage. Technical Report No. RR2000/05. Statis-

tical Research Division, Methodology and Standards Directorate, U.S. Bureau of

the Census.

Zeileis, Achim, Torsten Hothorn and Kurt Hornik. 2008. “Model-based Recursive

Partitioning.” Journal of Computational and Graphical Statistics 17:492514.

106

https://www.researchgate.net/publication/243778219_Near_Automatic_Weight_Computation_in_the_Fellegi-Sunter_Model_of_Record_Linkage
https://www.researchgate.net/publication/243778219_Near_Automatic_Weight_Computation_in_the_Fellegi-Sunter_Model_of_Record_Linkage
https://www.researchgate.net/publication/243778219_Near_Automatic_Weight_Computation_in_the_Fellegi-Sunter_Model_of_Record_Linkage
https://www.iser.essex.ac.uk/research/publications/501361
http://ww2.amstat.org/sections/srms/Proceedings/papers/1993_042.pdf
http://ww2.amstat.org/sections/srms/Proceedings/papers/1993_042.pdf

Appendix A

Appendix for “Model Selection and

Model Comparison for Predicting

Heterogeneous Treatment Effects”

A.1 Kunzel et al. (2018) Meta-Learners

Algorithm 1 S-Learner

1. Estimate Yi = f(Xi, Ti) + εi

2. Generate predictions Ŷ T
i = ̂f(Xi, Ti = 1) and Ŷ C

i = ̂f(Xi, Ti = 0) for all obser-
vations
3. Generate predictions of the individual-level treatment effect as τ̂i = Ŷ T

i − Ŷ C
i

Algorithm 2 T-Learner

1. Estimate Yi = fT (Xi) + εTi for treated observations, and Yi = fC(Xi) + εCi for
control observations
2. Generate predictions Ŷ T

i = f̂T (Xi) and Ŷ C
i = f̂C(Xi)

3. Generate predictions of the individual-level treatment effect as τ̂i = Ŷ T
i − Ŷ C

i

107

Algorithm 3 F-Learner

1. Generate Y ∗i = Yi × Ti−e(Xi)
e(Xi)(1−e(Xi))

, where e(Xi) is an estimate of the propensity
score or simply the share of treated observations in a randomized experiment
2. Estimate Y ∗i = f(Xi) + εi

3. Generate predictions of the individual-level treatment effect as τ̂i = f̂(Xi)

Algorithm 4 X-Learner

1. Estimate Yi = fYT (Xi) + εTi for treated observations, and Yi = fYC (Xi) + εCi for
control observations
2. Generate residuals for treated observations ηTi = Yi − f̂YC (Xi) and for control

observations ηCi = f̂YT (Xi)− Yi
3. Estimate ηTi = f ηT (Xi) + γTi for treated observations, and ηCi = f ηC(Xi) + γCi for
control observations
4. Generate predictions η̂Ti = f̂ ηT (Xi) and η̂Ci = f̂ ηC(Xi) for all observations

5. Generate predictions of the individual-level treatment effect as τ̂i = e(Xi)η̂Ci +

(1 − e(Xi))η̂Ti , where e(Xi) is an estimate of the propensity score or simply the
share of treated observations in a randomized experiment

108

A.1.1 Reasoning behind Y ∗i

Section 2.2.2 reviews a number of generic learner types for estimating heterogeneous

treatment effects, including the F-learner. In the F-learner, the observed outcome

Yi is transformed into Y ∗i = Yi × Ti−e(Xi)
e(Xi)(1−e(Xi))

, where Ti indicates treatment status

and e(Xi) is an estimate of the propensity score. Below, I show the logic behind this

transformation and how it equals our target quantity of interest in expectation. This

derivation borrows heavily from Athey and Imbens (2016).

E(Y ∗i | Xi) = E
(
Yi ×

Ti − e(Xi)

e(Xi)(1− e(Xi))
| Xi

)
= E

(
TiYi ×

Ti − e(Xi)

e(Xi)(1− e(Xi))
+ (1− Ti)Yi ×

Ti − e(Xi)

e(Xi)(1− e(Xi))
| Xi

)
= E

(
TiYi(1)× Ti − e(Xi)

e(Xi)(1− e(Xi))
| Xi

)
+

E
(

(1− Ti)Yi(0)× Ti − e(Xi)

e(Xi)(1− e(Xi))
| Xi

)
= E

(
TiYi(1)

e(Xi)
| Xi

)
− E

(
(1− Ti)Yi(0)

1− e(Xi)
| Xi

)
=

E(Ti | Xi)E(Yi(1) | Xi)

e(Xi)
− E(1− Ti | Xi)E(Yi(0) | Xi)

1− e(Xi)

= E(Yi(1) | Xi)− E(Yi(0) | Xi)

109

A.1.2 Simulation Setup

Algorithm 5 Data Generating Process for Simulated Data Exercises.
Input: covariate correlation level ρ, Yi(0) DGP ∈ {linear, complex}, τi DGP ∈
{linear, complex}

for 1000 iterations do
Draw correlation matrix Σ ∼ Vine(ρ)
Draw covariates Xi ∼MVN (0,Σ)

βk ∼ U(−5, 5)
εi ∼ N (0, 1)
if Yi(0) DGP = complex then

Yi(0) = β1sin(πXi5/Xi2) + β2log(|Xi1 −Xi2Xi6|) + εi
else

Yi(0) = β1Xi1 + β2Xi2 + β3Xi5 + β4Xi6 + εi
end if

γk ∼ U(−5, 5)
ηi ∼ N (0, 1)
if τi DGP = complex then

τi = γ1sin(πXi5/Xi4) + γ2log(|Xi3 −Xi4Xi6|) + ηi
else

τi = γ1Xi3 + γ2Xi4 + γ3Xi5 + γ4Xi6 + ηi
end if

Draw treatment indicator Ti ∼ Bern(.5)
Calculate potential outcomes under treatment as Yi(1) = Yi(0) + τi
Calculate observed outcomes as Y obs

i = Yi(0) + Ti × τi
end for

110

Appendix B

Appendix for “Validating

Ensembles of Simulated

Redistricting Plans”

B.1 The Proposed Enumeration Algorithm

Algorithm 6 Proposed Validation Scheme for Redistricting Simulators.
Input: State graph G, number of precincts to sample n, number of districts to
partition p, number of iterations to run sampler k, number of iterations to repeat
validation exercise t

for t iterations do
1. Sample small map Gsub ∈ G with n precincts.
2. Enumerate every partition of Gsub into p contiguous districts.
3. Calculate statistic of interest for each enumerated plan Starg.
4. Run redistricting simulation method on Gsub to draw k maps partitioned

into p districts.
5. Calculate statistic of interest for each simulated plan Ssim.
6. Compare Starg to Ssim using chosen measure, and store that measure.

end for

111

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Model Selection and Model Comparison for Predicting Heterogeneous Treatment Effects
	2.1 Introduction
	2.2 Heterogeneous Treatment Effect Models in Political Science and Political Campaigns
	2.2.1 Review of Heterogeneous Treatment Effect Models
	2.2.2 Status Quo Methods for Building and Deploying Heterogeneous Treatment Effect Models

	2.3 Diagnostics for HTE Model Selection
	2.3.1 Simulations to Validate the T-AUC Metric
	2.3.2 Tuning a Random Forest using the T-AUC Metric

	2.4 Uncovering Turnout Persuadability in Social Pressure GOTV Experiments
	2.5 Conclusion

	3 Validating Ensembles of Simulated Redistricting Plans
	3.1 Introduction
	3.2 Simulation Methods for Evaluating Redistricting Plans
	3.2.1 Random-Seed-and-Grow Simulation Methods
	3.2.2 Markov chain Monte Carlo Simulation Methods
	3.2.3 Evolutionary Algorithm Methods

	3.3 Validation Exercises using FL25
	3.4 General Tests for Evaluating Redistricting Simulation Methods
	3.5 Conclusion

	4 fastLink: R Package for Fast Probabilistic Record Linkage
	4.1 Introduction
	4.2 Overview of the fastLink Algorithm
	4.2.1 The Model and Assumptions
	4.2.2 The EM Algorithm
	4.2.3 Hashing for Efficient Memory Management
	4.2.4 Reverse Data Structures for Field Comparisons
	4.2.5 Parallelization and Random Sampling

	4.3 Conducting Data Merges using fastLink
	4.3.1 A Small-Scale Example
	4.3.2 Alternative Methods of Constructing Matching Patterns
	4.3.3 Incorporating Partial Match Categories
	4.3.4 Random Sampling to Speed up Large-scale Data Merges
	4.3.5 Capturing Dependence between Linkage Fields
	4.3.6 Finding Duplicates in a Single Data Set

	4.4 Incorporating Auxiliary Information and Post-Processing Data Merges
	4.4.1 Information on Migration Rates
	4.4.2 Reweighting Match Probabilities Ex-Post with Name Frequencies
	4.4.3 Enforcing a One-to-One Merge

	4.5 Preprocessing Data Merges
	4.5.1 Cleaning and Harmonizing Strings
	4.5.2 Blocking Data to Improve Merge Quality

	4.6 Application — Party Switching in Brazil
	4.7 Conclusion
	References

	A Appendix for ``Model Selection and Model Comparison for Predicting Heterogeneous Treatment Effects''
	A.1 kunz:2018 Meta-Learners
	A.1.1 Reasoning behind Yi
	A.1.2 Simulation Setup

	B Appendix for ``Validating Ensembles of Simulated Redistricting Plans''
	B.1 The Proposed Enumeration Algorithm

